首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The status of the transgene in tobacco plants transformed by Agrobacterium was analyzed with PCR. Twelve percent of the transgenic plants with the nptII gene showed different levels of transgene deletion, which was also found in transgenic watermelon (10-30%) and carrot (40-60%). It appeared that the percentage of transgenic plants carrying deleted transgenes depended on both the transgene and the plant. It is suggested that the transgene should be inserted between a right border and a selection marker to reduce the number of transgenic plants containing deleted transgenes after selection.  相似文献   

2.
Transformants of maize inbred A188 were efficiently produced from immature embryos cocultivated with Agrobacterium tumefaciens that carried "super-binary" vectors. Frequencies of transformation (independent transgenic plants/embryos) were between 5% and 30%. Almost all transformants were normal in morphology, and more than 70% were fertile. Stable integration, expression, and inheritance of the transgenes were confirmed by molecular and genetic analysis. Between one and three copies of the transgenes were integrated with little rearrangement, and the boundaries of T-DNA were similar to those in transgenic dicotyledons and rice. F1 hybrids between A188 and five other inbreds were transformed at low frequencies.  相似文献   

3.
Heat treatment (37 degrees C) of transgenic tobacco (Nicotiana tabacum) plants led to a reversible reduction or complete loss of transgene-encoded activities in about 40% of 10 independent transformants carrying the luciferase-coding region fused to the 355 cauliflower mosaic virus or the soybean small subunit promoter and the nopaline synthase promoter driving the neomycin phosphotransferase gene, whereas the other lines had temperature-tolerant activities. Temperature sensitivity or tolerance of transgene-encoded activities was heritable. In some of the lines, temperature sensitivity of the transgene-encoded activities depended on the stage of development, occurring in either seedlings (40% luciferase and 50% neomycin phosphotransferase) or adult plants (both 40%). The phenomenon did not correlate with copy numbers or the homo- or hemizygous state of the transgenes. In lines harboring a temperature-sensitive luciferase activity, reduction of bioluminescence was observed after 2 to 3 h at 37 degrees C. Activity was regained after 2 h of subsequent cultivation at 25 degrees C. Irrespective of the reaction to the heat treatment, the level of luciferase RNA was slightly increased at 37 degrees C. Only in lines showing temperature sensitivity of transgene-encoded activities was the amount of luciferase and neomycin phosphotransferase strongly reduced. In sterile culture, heat treatment for 15 d did not cause visible damage or changes in plant morphology. In all plants tested a slight induction of the heat-shock response was observed at 37 degrees C.  相似文献   

4.
5.
Transmitting tissue-specific (TTS) protein is a pollen tube growth-promoting and attracting glycoprotein located in the stylar transmitting tissue extracellular matrix of the pistil of tobacco. The TTS protein backbones have a deduced molecular mass of about 28 kDa, whereas the glycosylated stylar TTS proteins have apparent molecular masses ranging between 50 and 100 kDa. TTS mRNAs and proteins are ectopically produced in transgenic tobacco plants that express either a cauliflower mosaic virus (CaMV) 35S promoter-TTS2 transgene or a CaMV 35S-promoter-NAG1 (NAG1 = Nicotiana tabacum Agamous gene) transgene. However, the patterns of TTS mRNA and protein accumulation and the quality of the TTS proteins produced are different in these two types of transgenic plants. In 35S-TTS transgenic plants, TTS mRNAs and proteins accumulate constitutively in vegetative and floral tissues. However, the ectopically expressed TTS proteins in these transgenic plants accumulate as underglycosylated protein species with apparent molecular masses between 30 and 50 kDa. This indicates that the capacity to produce highly glycosylated TTS proteins is restricted to the stylar transmitting tissue. In 35S-NAG transgenic plants, NAG1 mRNAs accumulate constitutively in vegetative and floral tissues, and TTS mRNAs are induced in the sepals of these plants. Moreover, highly glycosylated TTS proteins in the 50- to 100-kDa molecular mass range accumulate in the sepals of these transgenic, 35S-NAG plants. These results show that the tobacco NAGI gene, together with other yet unidentified regulatory factors, control the expression of TTS genes and the cellular capacity to glycosylate TTS proteins, which are normally expressed very late in the pistil developmental pathway and function in the final stage of floral development. The sepals in the transgenic 35S-NAG plants also support efficient pollen germination and tube growth, similar to what normally occurs in the pistil, and this ability correlates with the accumulation of the highest levels of the 50- to 100-kDa glycosylated TTS proteins.  相似文献   

6.
7.
The effects of subcellular localization on single-chain antibody (scFv) expression levels in transgenic tobacco was evaluated using an scFv construct of a model antibody possessing different targeting signals. For translocation into the secretory pathway a secretory signal sequence preceded the scFv gene (scFv-S). For cytosolic expression the scFv antibody gene lacked such a signal sequence (scFv-C). Also, both constructs were provided with the endoplasmic reticulum (ER) retention signal KDEL (scFv-SK and scFv-CK, respectively). The expression of the different scFv constructs in transgenic tobacco plants was controlled by a CaMV 35S promoter with double enhancer. The scFv-S and scFv-SK antibody genes reached expression levels of 0.01% and 1% of the total soluble protein, respectively. Surprisingly, scFv-CK transformants showed considerable expression of up to 0.2% whereas scFv-C transformants did not show any accumulation of the scFv antibody. The differences in protein expression levels could not be explained by the steady-state levels of the mRNAs. Transient expression assays with leaf protoplasts confirmed these expression levels observed in transgenic plants, although the expression level of the scFv-S construct was higher. Furthermore, these assays showed that both the secretory signal and the ER retention signal were recognized in the plant cells. The scFv-CK protein was located intracellularly, presumably in the cytosol. The increase in scFv protein stability in the presence of the KDEL retention signal is discussed.  相似文献   

8.
Extensive genomic sequencing and sequence motif analysis have been conducted over the integration sites of two transgenic rice plants, #478 and #559, carrying the luciferase gene and/or hygromycin phosphotransferase gene. The transgenes reside in a region with inverted structure and a large duplication of rice genome over 2 kb. Integration was found at the AT-rich region and/or at the repetitive sequence region, including a SAR-like structure, retrotransposon and telomere repeats. The presence of a patch of sequence homology between plasmid and target DNA, and a small region of duplication involving the target DNA around the recombination site, implicated illegitimate recombination in the process of gene integration. Massive rearrangement of genomic DNA including deletion or translocation was also observed at the integration site and the flanking region of the transgene. The recognition sites of DNA topoisomerases I or II were observed in the rearranged sequences. Since only three junctions of transgenic rice were implicated in the illegitimate recombination and extensive rearrangement of the rice genome, rice protoplasts may be active in this process.  相似文献   

9.
10.
Cells of Catharanthus roseus (L.) G. Don were genetically engineered to over-express the enzymes strictosidine synthase (STR; EC 4.3.3.2) and tryptophan decarboxylase (TDC; EC 4.1.1.28), which catalyze key steps in the biosynthesis of terpenoid indole alkaloids (TIAs). The cultures established after Agrobacterium-mediated transformation showed wide phenotypic diversity, reflecting the complexity of the biosynthetic pathway. Cultures transgenic for Str consistently showed tenfold higher STR activity than wild-type cultures, which favored biosynthetic activity through the pathway. Two such lines accumulated over 200 mg.L-1 of the glucoalkaloid strictosidine and/or strictosidine-derived TIAs, including ajmalicine, catharanthine, serpentine, and tabersonine, while maintaining wild-type levels of TDC activity. Alkaloid accumulation by highly productive transgenic lines showed considerable instability and was strongly influenced by culture conditions, such as the hormonal composition of the medium and the availability of precursors. High transgene-encoded TDC activity was not only unnecessary for increased productivity, but also detrimental to the normal growth of the cultures. In contrast, high STR activity was tolerated by the cultures and appeared to be necessary, albeit not sufficient, to sustain high rates of alkaloid biosynthesis. We conclude that constitutive over-expression of Str is highly desirable for increased TIA production. However, given its complexity, limited intervention in the TIA pathway will yield positive results only in the presence of a favorable epigenetic environment.  相似文献   

11.
Hypertrophic cardiomyopathy (HCM) is a disease of sarcomeric proteins. The mechanism by which mutant sarcomeric proteins cause HCM is unknown. The leading hypothesis proposes that mutant sarcomeric proteins exert a dominant-negative effect on myocyte structure and function. To test this, we produced transgenic mice expressing low levels of normal or mutant human cardiac troponin T (cTnT). We constructed normal (cTnT-Arg92) and mutant (cTnT-Gln92) transgenes, driven by a murine cTnT promoter, and produced three normal and five mutant transgenic lines, which were identified by PCR and Southern blotting. Expression levels of the transgene proteins, detected using a specific antibody, ranged from 1 to 10% of the total cTnT pool. M-mode and Doppler echocardiography showed normal left ventricular dimensions and systolic function, but diastolic dysfunction in the mutant mice evidenced by a 50% reduction in the E/A ratio of mitral inflow velocities. Histological examination showed cardiac myocyte disarray in the mutant mice, which amounted to 1-15% of the total myocardium, and a twofold increase in the myocardial interstitial collagen content. Thus, the mutant cTnT-Gln92, responsible for human HCM, exerted a dominant-negative effect on cardiac structure and function leading to disarray, increased collagen synthesis, and diastolic dysfunction in transgenic mice.  相似文献   

12.
Recent studies using interleukin (IL)-4-deficient animals have highlighted the existence of IL-4-independent immunoglobulin (Ig)E induction. We have established transgenic mice expressing IL-13 from a transgene comprising a genomic fragment containing the IL-13 gene and the human CD2 locus control region. The transgenes were expressed in lymphoid tissues and induced by T cell activators, suggesting regulation by elements of the IL-13 promoter. IL-13 transgenic lines expressed 10-100-fold higher levels of serum IgE than their littermate controls, but had normal levels of other serum Ig isotypes. Elevated IgE levels were also detected in sera from IL-4-deficient mice carrying IL-13 transgenes, indicating that IL-4 is not required for IL-13-induced IgE expression in the mouse. Expression of IL-13 also perturbed the development of thymocytes. Although thymocyte development was normal up to 4 wk of age, thymocyte number decreased dramatically thereafter, reaching 10% of normal by 10 wk, and despite normal size and appearance, histological examination demonstrated that transgenic thymi contained only small foci of thymocytes. The reduction in thymocyte number was due mainly to a depletion of CD4(+)CD8(+) thymocytes, and did not affect significantly the composition of peripheral T cell populations. These data indicate that expression of IL-13 transgenes in vivo can regulate IgE production in the mouse, and that IL-13 may also influence thymocyte development.  相似文献   

13.
14.
The C1 gene of tomato yellow leaf curl geminivirus (TYLCV) encodes a multifunctional protein (Rep) involved in replication. A truncated form of this gene, capable of expressing the N-terminal 210 amino acids (aa) of the Rep protein, was cloned under the control of the CaMV 35S promoter and introduced into Nicotiana benthamiana using Agrobacterium tumefaciens. The same sequence was also cloned in antisense orientation. When self-pollinated progeny of 19 primary transformants were tested for resistance to TYLCV by agroinoculation, some plants proved to be resistant, particularly in the sense lines. Two such lines were further studied. The presence of the transgene was verified and its expression was followed at intervals. All plants that were resistant to TYLCV at 4 weeks postinoculation (wpi) contained detectable amounts of transgenic mRNA and protein at the time of infection. Resistance was overcome in a few plants at 9 wpi, and in most at 15 wpi. Infection of leaf discs derived from transgenic plants showed that expression of the transgene correlated with a substantial reduction of viral DNA replication. Cotransfections of tobacco protoplasts demonstrated that inhibition of viral DNA replication requires expression of the truncated Rep protein and suggested that the small ORF C4, also present in our construct, plays no role in the resistance observed. The results obtained using both transient and stable gene expression systems show that the expression of the N-terminal 210 aa of the TYLCV Rep protein efficiently interferes with virus infection.  相似文献   

15.
The stability of transgenes in the genome of transformed plants depends strongly on their correct physical integration into the host genome as well as on flanking target DNA sequences. For long-lived species like trees, however, no information is available so far concerning inactivation or loss of transgenes due to gene silencing or somatic genome rearrangement events. In this study, four independently transformed 35S-rolC transgenic hybrid aspen plants (Populus tremula L. x tremuloides Michx.), each harbouring one copy of the transgene, were investigated during continuous growth in the greenhouse. In one of these transgenic lines (Esch5:35S-rolC-#1) individuals frequently show phenotypic reversions, while in the remaining three lines (Esch5:35S-rolC-#3, -#5, -#16) the gene was essentially stable. Molecular analysis including PCR, Southern and Northern assays clearly showed that the transgene had been lost in the revertant tissue of the unstable line. Sequencing of T-DNA right and left borders, and flanking DNA regions, in all four transgenic aspen lines revealed no differences either in the type of flanking DNA (G-C to A-T ratio) or with respect to the presence of enhancers or MAR (matrix associated repeats)-like structures. Primers located within the left and right flanking regions in the three stable lines could be used to recover the target sites from the untransformed plants. This was not possible, however, with the unstable line, indicating that at least one flanking sequence does not derive from the plant target DNA but is of unknown origin. PCR using other primer pairs, and inverse PCR analysis, revealed an additional truncated T-DNA copy of 1050 nucleotides adjacent to the left border of the complete copy in this line. Sequencing of this truncated T-DNA revealed that it represented an inverted copy of part of the right half of the original construct. This special feature would allow the inverted repeat to pair with right border sequences of the complete copy. This would explain the frequently observed reversion resulting in transgene loss as due to intrachromosomal base-pairing leading to double-stranded loops of single-stranded DNA during mitotic cell divisions.  相似文献   

16.
17.
18.
19.
We previously reported that overexpression of the rice homeobox gene OSH1 led to altered morphology and hormone levels in transgenic tobacco (Nicotiana tabacum L.) plants. Among the hormones whose levels were changed, GA1 was dramatically reduced. Here we report the results of our analysis on the regulatory mechanism(s) of OSH1 on GA metabolism. GA53 and GA20, precursors of GA1, were applied separately to transgenic tobacco plants exhibiting severely changed morphology due to overexpression of OSH1. Only treatment with the end product of GA 20-oxidase, GA20, resulted in a striking promotion of stem elongation in transgenic tobacco plants. The internal GA1 and GA20 contents in OSH1-transformed tobacco were dramatically reduced compared with those of wild-type plants, whereas the level of GA19, a mid-product of GA 20-oxidase, was 25% of the wild-type level. We have isolated a cDNA encoding a putative tobacco GA 20-oxidase, which is mainly expressed in vegetative stem tissue. RNA-blot analysis revealed that GA 20-oxidase gene expression was suppressed in stem tissue of OSH1-transformed tobacco plants. Based on these results, we conclude that overexpression of OSH1 causes a reduction of the level of GA1 by suppressing GA 20-oxidase expression.  相似文献   

20.
To determine if rearranged heavy chain variable (VDJ) genes can recombine with each other by crossing over of DNA strands, we constructed a transgene that contained a promoter, VDJ gene, reporter gene to detect crossover events, intron enhancer, matrix attachment region, and constant gene for IgM (C mu). Following immunization of transgenic mice, hybrid molecules were isolated from B cell DNA which contained the transgene recombined with the endogenous IgH locus. Reciprocal products of crossovers were detected by plasmid rescue and PCR amplification, and they were sequenced. Recombination occurred somewhere within 147 bp of homology that contained the JH4 gene segment and 3' flanking DNA. The recombined transgenes had a 20-fold increase in mutation in the VDJ region compared to nonrecombined transgenes, which indicates that DNA sequences 3' of the C mu gene in the endogenous IgH locus are necessary for full activity of the mutator mechanism. The recovery of recombinants between VDJ transgenes and endogenous VDJ genes raises the possibility that reciprocal recombination may somatically diversify rearranged genes between maternal and paternal alleles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号