首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
用FCC汽油和单质硫合成硫化烯烃后再与单质硫混合制成硫化剂,将其用于浸渍预硫化加氢精制催化剂,考察浸渍工艺条件对预硫化催化剂的硫保留度、硫化度、催化剂破碎率等的影响规律。采用气相间歇活化法对预硫化催化剂进行活化。结果表明,单质硫与硫化烯烃的摩尔比为1:1、浸渍前先制成混合硫化剂方法浸渍效果较好。适宜的浸渍条件为:混合硫化剂加入量为催化剂完全硫化理论需硫量的1.4倍,温度为170℃,浸渍时间为3h,单质硫与硫化烯烃含硫量的摩尔比为1:1。添加助剂的催化剂硫含量和硫保留度均高于不加助剂催化剂。用100mL加氢精制装置对器内和器外两种方法硫化的催化剂进行加氢反应活性评价,结果表明,两种硫化工艺硫化的催化剂活性相当。  相似文献   

2.
加氢催化剂器外预硫化技术的开发应用   总被引:4,自引:0,他引:4  
以廉价的元素硫为硫化剂,一步浸渍法制备器外预硫化催化剂的方法,具有流程简单灵活、生产成本低、产品收率高、硫保留度高、无集中放热现象等优点。工业应用结果表明,采用该技术生产的催化剂呵缩短开工周期,加氢活性达到采用器内硫化催化剂的水平。  相似文献   

3.
孙树成  王鉴  董群 《石化技术与应用》2005,23(3):182-184,i001
以硫化烯烃为硫化剂,200^#溶剂油为溶剂,对裂解汽油加氢二段加氢催化剂进行预硫化,研究了浸渍工艺,考察了溶剂与催化剂体积比、反应时间、反应温度及浸渍时间对硫化度及活性的影响。结果表明:虽然高温长时间制备的催化剂颜色较黑,但其活性不高。优化工艺条件为:溶剂与催化剂体积比0.6,浸渍时间1h,反应时间1h,反应温度120℃;在此条件下,可获得较高的加氢活性及硫化度。  相似文献   

4.
加氢催化剂预硫化技术进展   总被引:5,自引:2,他引:3  
介绍了加氢催化剂预硫化的原理、影响因素及技术发展态势。器内预硫化技术由于缺点较多而将被逐渐淘汰。器外预硫化是预硫化技术的发展方向,具有操作简单、硫化效率高、无污染等优点,已在加氢工业装置上得到应用,先以不同方式将单质硫硫化剂负载到催化剂载体上,然后将预硫化催化剂装填到加氢反应器中,通人氢气活化。  相似文献   

5.
加氢催化剂有机硫化剂器外预硫化技术   总被引:5,自引:0,他引:5  
以有机硫化物为硫化剂的器外预硫化技术是加氢催化剂预硫化技术的重要发展方向。介绍了有机多硫化物作为硫化剂的预硫化机理;探讨了有机多硫化物在器外预硫化过程中影响催化剂活性的因素,认为浸渍液中硫化剂含量、干燥温度、硫化温度及氢压是影响催化剂活性的主要因素。并对加氢催化剂器外预硫化技术的研究方向提出建议。  相似文献   

6.
硫化型加氢催化剂的制备研究   总被引:3,自引:0,他引:3  
以常规金属无机盐及硫化剂为原料合成硫化物前驱体,在硫化物前驱体溶液中加入添加剂配成浸渍液,浸渍载体制成硫化型加氢催化剂。通过XPS、SEM-EDS、微反评价等分析方法对硫化型催化剂进行表征。结果表明,硫化型催化剂的硫有效利用率和硫化度均比目前广泛应用的器外预硫化催化剂高;硫化型催化剂活性组分在载体上分布均匀且硫化完全,生成了高活性的NiMoS活性相,硫化型催化剂加氢活性高。  相似文献   

7.
采用自制硫化剂对裂解汽油二段加氢催化剂进行浸渍预硫化,研究了浸渍温度对催化剂硫化度及活性的影响,并利用程序升温脱附(TPD)和差热分析法(DTA)测定了硫化剂的分解温度,表征了浸渍催化剂程序升温硫化(TPS)时的放热情况.结果表明,所合成硫化剂的分解温度为150~300℃,浸渍温度高时催化剂的硫化度及活性较高,浸渍自制硫化剂的催化剂在TPS过程中放热分散,在60~320℃较宽温度范围内产生H2S,且持硫率达到91.5%.  相似文献   

8.
器外预硫化型MoNiP/γ-Al2O3催化剂的加氢脱硫性能研究   总被引:5,自引:0,他引:5  
以二苯并噻吩为模型化合物,研究了器外预硫化型加氢催化剂MoNiP/γ-Al2O3的加氢脱硫初始活性及其储存稳定性。结果表明,使用不同配方的硫化剂,在反应温度160℃、浸渍温度160℃、浸渍时间4h、氮气热处理温度300℃的条件下制备得到的器外预硫化催化剂的加氢脱硫活性较好,部分可以达到器内预硫化催化剂的效果,但其加氢活性稍弱;二苯并噻吩在器内与器外预硫化催化剂上的加氢脱硫反应的历程类似,但是对于器外预硫化催化剂而言,二苯并噻吩的加氢脱硫主要依赖于氢解历程。器外预硫化催化剂的储存稳定性较好,长期储存后仍可以维持较高的HDS活性。  相似文献   

9.
根据重整预加氢工业装置及所需催化剂的特点,通过自主研发的器外预硫化工艺及硫化剂配方开发出了新型预硫化型重整预加氢催化剂DZF-1。在国内某炼油厂500 kt/a重整预加氢装置进行工业应用,表明该催化剂具有简化开工程序、可省去干燥脱水过程、节省器内硫化所需的注硫设施、缩短开工时间、减少环境污染及催化剂硫化完全等优点。与氧化型催化剂硫化相比至少节省24 h开工时间,活化开工时催化剂能够逐级释放H_2S,使循环氢中H_2S含量在理想范围内,整个活化开工过程反应器床层最高温升小于15℃。工业运转表明在其他工艺参数相当条件下,与上周期国内某同类型催化剂相比平均反应温度降低10~15℃。  相似文献   

10.
加氢催化剂器外预硫化工艺的中试研究   总被引:1,自引:1,他引:0  
考察了在流化催化裂化(FCC)柴油加氢精制中试中,应用器外与器内预硫化工艺时,LH-03工业加氢催化剂的性能;采用 X 射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)和元素分析等方法对催化剂进行了表征。实验结果表明,在氢气压力6.0 MPa、氢气与 FCC 柴油体积比500、反应温度350℃、液态空速1.5 h~(-1)的条件下,采用器外预硫化工艺时催化剂的加氢活性基本达到器内预硫化工艺的水平,加氢脱硫活性明显优于器内预硫化工艺,而加氢脱氮活性与十六烷值增幅略低。采用器外预硫化工艺时,催化剂的加氢活性可随运转时间的延长而逐渐提高。XRD、HRTEM 及元素分析结果表明,在运转一段时间后,器外预硫化加氢催化剂的硫化度和硫化物活性相的完善程度已非常接近器内预硫化催化剂。  相似文献   

11.
GARDES-II器外完全硫化催化剂在中国石油呼和浩特石化分公司(简称呼和浩特石化)1.2 Mt/a 催化裂化汽油加氢脱硫装置上成功应用。应用结果表明,与氧化态催化剂开工相比,硫化态催化剂的开工过程安全环保、流程简单且耗时短。通过初期标定数据可以看出,GARDES-II器外完全硫化催化剂完全可以满足呼和浩特石化现行工况下生产国VI(A)标准汽油的要求,产品通过博士试验,硫质量分数平均为7.1 μg/g,研究法辛烷值(RON)损失1.1~1.3个单位,汽油收率达99.0%,装置能耗为516.23 MJ/t。其中,重汽油烯烃体积分数平均降低11.4百分点。由此表明,GARDES-II器外完全硫化催化剂的加氢性能已达到器内硫化水平,具有良好的脱硫活性和辛烷值恢复功能。  相似文献   

12.
 以喹啉为模型化合物,考察了器外预硫化型MoNiP/γ-Al2O3加氢催化剂的HDN性能,并采用传统的器内预硫化的催化剂作为参比。结果表明,喹啉在器内预硫化催化剂上的HDN反应历程类似;但是相比器内预硫化催化剂,采用本文工艺条件制备的器外预硫化型催化剂的喹啉转化率更高,而HDN活性相对稍弱,尤其是加氢性能存在一定差距,这与其活性相MoS2之间的差别有关。器外预硫化催化剂中编号为Ex6-0-4的催化剂具有最高的HDN活性,其喹啉转化率甚至优于器内预硫化催化剂。  相似文献   

13.
RS-1000(S)器外预硫化催化剂在加氢装置上的应用   总被引:2,自引:0,他引:2  
介绍了RS-1000(S)器外预硫化催化剂在中国石油克拉玛依石化公司汽柴油加氢装置上的工业应用。工业标定结果表明,在2.5h-1的较高空速下,采用加氢精制工艺在RS-1000(S)催化剂的作用下生产的精制柴油其平均脱硫率为91.21%,脱氮率为59.76%,产品质量达到了GB/T1947-2003轻柴油质量标准,同时符合世界燃油规范(Ⅱ类)和欧盟(Ⅲ类EN590-99)的轻柴油质量要求。 RS-1000(S)催化剂活化过程历时13 h,与器内湿法硫化相比可节省近两天的时间。此外,还可以简化开工步骤,不需要处理难闻且有毒害的硫化剂。  相似文献   

14.
 采用Co(Ac)2、(NH4)6Mo7O24·4H2O和乙二胺的浓氨水溶液共浸渍γ-Al2O3载体,制备适合于含硫原料油硫化活化的炭改性Co-Mo催化剂。炭改性Co-Mo催化剂用噻吩模拟原料油硫化后脱硫活性与对照Co-Mo催化剂用DMDS硫化的脱硫活性相当。由于添加物乙二胺和Co2+形成络合物,推迟了Co2+的硫化,使活性金属Mo在Co之前完成硫化,这有利于助剂Co2+迁移到已形成的MoS2活性相的侧边形成Co-Mo-S活性结构。在硫化过程中,醋酸和乙二胺的碳化,减弱了载体与活性金属的相互作用,使活性金属Mo更容易硫化。醋酸和乙二胺的共同作用,促成了对催化剂的碳改性,改善了催化剂噻吩模拟油硫化的效果。  相似文献   

15.
In order to improve the octane number of gasoline, Ni/HZSM-5 and NiMo/HZSM-5 catalysts were prepared by impregnation method, and their activities for hydrocracking, hydroisomerization, and aromatization were investigated by the transformation of cylcohexane. The experimental results show that the conversion of cyclohexane is affected greatly by the reaction temperature. The production of methyl-cyclopentane is the result of the hydroisomerization of cyclohexane. The olefin distribution reveals that the hydrocracking reaction of cyclohexane over acidic zeolite catalyst probably obeys the dimolecular mechanism and the C5 and C7 olefins come from the cracking of the dimer of cyclohexane. The activities of the presulfided Ni/HZSM-5 and NiMo/HZSM-5 catalyst for the transformation of cyclohexane were evaluated and the product selectivities for two presulfided catalysts are similar to those obtained over reduced Ni/HZSM-5 catalyst.  相似文献   

16.
以γ-Al2O3为载体,采用等体积浸渍法分别制备了H2SO4,Ni(NO3)2,Ni(NO3)2-H2SO4,NiSO4改性的加氢脱硫催化剂。采用X射线衍射、N2吸附-脱附、H2-程序升温还原、紫外-拉曼光谱、X射线光电子能谱和反应性能评价等方法研究了硫酸根对Ni/γ-Al2O3催化剂的物性和催化噻吩加氢脱硫选择性的影响。结果表明:含硫酸根前躯体制备的Ni/γ-Al2O3催化剂的加氢脱硫活性和选择性高于Ni(NO3)2前躯体制备的催化剂;NiSO4前躯体制备催化剂的加氢脱硫活性和选择性最高,较Ni(NO3)2制备的催化剂分别提高了19百分点和78%。催化活性的差异与催化剂中Ni的形态相关,硫酸根的存在一方面减弱了Ni与载体间的相互作用,另一方面提供了镍原位自硫化的硫化剂,形成的硫化镍物种与NiSO4是催化剂的活性中心,其脱硫活性和选择性明显高于引入硫化剂硫化的催化剂。  相似文献   

17.
利用直馏柴油加氢脱硫反应研究初活稳定过程对NiMo/Al2O3催化剂加氢脱硫活性稳定性的影响。分别采用干法和湿法两种硫化方式制备的NiMo/Al2O3催化剂在初活稳定条件下处理48 h。对比评价了无初活稳定和经48 h初活稳定处理工况下催化剂活性以及积炭量发生的变化。借助XPS,TEM,TG-MASS和碳含量分析等方法对样品进行了表征。结果表明:采用干法或湿法硫化,初活稳定过程均可以提高新鲜硫化后NiMo/Al2O3催化剂的稳定性;初活稳定过程促进了活性相上积炭量的增加,而这些积炭的存在可起到适度修饰活性相表面结构的作用,有助于提高催化剂的稳定性。  相似文献   

18.
中国石油云南石化有限公司1.8 Mt/a汽油加氢装置采用由中国石油石油化工研究院开发的催化汽油选择性加氢脱硫(PHG)成套技术,在加工负荷为100%,催化汽油原料含硫量为81.4 μg/g,轻重汽油质量比为34∶66,使用预加氢器外再生催化剂(简称再生剂)PHG-131、加氢脱硫器外再生剂PHG-111、加氢后处理器外再生剂PHG-151的条件下,对该装置进行了48 h标定,对比了新鲜催化剂(简称新鲜剂)、待生催化剂、再生剂的物化性质,并考察了调和汽油产品的性质。结果表明:PHG-131,PHG-111,PHG-151再生剂的脱碳率依次为95.24%,97.56%,96.12%,脱硫率依次为53.11%,69.04%,73.95%,其均满足质量指标要求;装填数据显示,再生剂装填堆积比比新鲜剂高;PHG-131再生剂选择性比新鲜剂低,PHG-111再生剂脱硫率为94.7%,烯烃损失仅减少4.2个百分点,研究法辛烷值损失1.7个单位,满足生产要求;与催化汽油原料相比,调和汽油产品含硫量降低70.5 μg/g,含硫醇硫量降低11.0 μg/g以上,RON损失1.1个单位,汽油诱导期延长310 min;装置能耗为745 MJ/t。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号