首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ovarian produced ecdysteroids regulate sex pheromone production in the female housefly, inducing the synthesis of (Z)-9-tricosene (Z9-23:Hy), cis-9,10-epoxytricosane, (Z)-14-tricosen-10-one and methylalkanes. Experiments were performed to gain a detailed understanding of the processes affected by 20-hydroxyecdysone (20-HE) that result in sex pheromone production as the female becomes reproductively mature. A novel microsomal fatty acid synthetase (FAS) is present in the epidermal tissue and plays a role in producing the methyl-branched fatty acid precursors to the methylalkanes. This FAS is released from the microsomes in the presence of 3 M KCl. A major enzyme activity influenced by 20-HE is the fatty acyl-CoA elongation system. A shift in the chain length specificity of the products of the elongation system causes the change in the chain lengths of the alkenes produced to switch from C27 and longer in the previtellogenic female to C23 in the mature female. Data is presented indicating that it is the condensation activity of the elongation system that is affected. Z9-23:Hy arises from a 24 carbon acyl group which is reduced to an aldehyde, and then converted to the hydrocarbon. Data is presented demonstrating that it is the fatty acyl-CoA derivative and not the free fatty acid that is the substrate. There does not appear to be a chain length specificity which regulates the conversion of fatty acyl-CoAs to hydrocarbons as both 24 and 28 carbon fatty acyl-CoAs are converted to hydrocarbon by both males and females of all ages.  相似文献   

2.
The substrate binding site of polyenoic fatty acid isomerase (PFI) has been investigated using a series of alternate substrates and by examination of the pH dependence on the kinetic parameters of PFI with selected substrates. The pH dependence profile of PFI with EPA [(5Z,8Z,11Z,14Z,17Z)-eicosapentaenoic acid] shows the enzyme to be catalytically active over a wide pH range, with activity being optimal below pH 6.0. Analysis of the kinetic parameters of DHA [(4Z,7Z,10Z,13Z,16Z,19Z)-docosahexen oic acid]; adrenic acid [(7Z,10Z,13Z,16Z)-docosatetraenoic acid]; EPA; arachidonic acid [(5Z,8Z,11Z,14Z)-eicosatetraenoic acid]; anandamide (arachidonyl-N-ethanolamide); and eicosatrienoic acid [(5Z,8Z,11Z)-eicosatrienoic acid] demonstrates that substrates possessing omega-3 olefins (DHA and EPA) have the lowest K(m) values (1.9 and 9.6 microM, respectively). EPA and arachidonic acid showed the highest V(max) values (6.0 and 2.8 micromol min(-1) mg(-1), respectively). The twenty carbon omega-9 fatty acid eicosatrienoic acid showed a relatively large K(m) and had a V(max) approximately 20-fold less than EPA. Anandamide, a substrate analog lacking an ionizable carboxylate, showed a K(m) similar to the other omega-6 fatty acids (arachidonic acid and adrenic acid); however, the V(max) was approximately 5-fold lower than arachidonic acid and 8-fold lower than EPA. Moreover, anandamide demonstrated no pH dependency on its kinetic parameters over a range where EPA showed a 27-fold decrease in V/K(m). NMR spectroscopy was used to determine the structure of the product from reaction of PFI with DHA. These data showed the compound to be (4Z,7Z,9E,11E,16Z,19Z)-docosahexenoi c acid. Reaction of PFI with dihomo-gamma-linolenic acid resulted in the development of two products, one with the characteristic chromophore of a conjugated triene, the other with a chromophore characteristic of a conjugated diene. Analysis of the products from these reactions of PFI, in conjunction with the kinetic parameters from the alternate substrates, provides compelling evidence that the enzyme preferentially orients the substrate in the catalytic site with respect to the methyl terminus.  相似文献   

3.
[1-14C]alpha-Linolenic acid was incubated with a particulate fraction of homogenate of leaves of the meadow buttercup (Ranunculus acris L.). The main product was a divinyl ether fatty acid, which was identified as 12-[1'(Z),3'(Z)-hexadienyloxy]-9(Z),11(E)-dodecadienoic acid. Addition of glutathione peroxidase and reduced glutathione to incubations of alpha-linolenic acid almost completely suppressed formation of the divinyl ether acid and resulted in the appearance of 13(S)-hydroxy-9(Z), 11(E),15(Z)-octadecatrienoic acid as the main product. This result, together with the finding that 13(S)-hydroperoxy-9(Z), 11(E),15(Z)-octadecatrienoic acid served as an efficient precursor of the divinyl ether fatty acid, indicated that divinyl ether biosynthesis in leaves of R. acris occurred by a two-step pathway involving an omega6-lipoxygenase and a divinyl ether synthase. Incubations of isomeric hydroperoxides derived from alpha-linolenic and linoleic acids with the enzyme preparation from R. acris showed that 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid was transformed into the divinyl ether 12-[1'(Z)-hexenyloxy]-9(Z), 11(E)-dodecadienoic acid. In contrast, neither the 9(S)-hydroperoxides of linoleic or alpha-linolenic acids nor the 13(R)-hydroperoxide of alpha-linolenic acid served as precursors of divinyl ethers.  相似文献   

4.
The regioselective epoxidation of oleic, linoleic, alpha-linolenic, and gamma-linolenic acid by cytochromes P4502CAA and P4502C2 was characterized. Epoxide metabolites for all fatty acids were resolved by normal phase HPLC and identified by gas chromatography and mass spectrometry. Both isoforms epoxidized the single double bond in oleic acid and both double bonds in linoleic acid. The ratio of the two epoxides produced with linoleic acid (1.6:1 for the 12,13- and 9,10-epoxides) was similar for both enzymes. When alpha-linolenic acid was the substrate, all three epoxides were produced in about equal ratios with both enzymes. In contrast for the omega-6 fatty acid, gamma-linolenic acid, both enzymes produced only the 9,10- and 12,13-epoxides. Furthermore, the ratio of the metabolites produced by each enzyme was significantly different. The ratios of 12,13-epoxide to 9,10-epoxide for gamma-linolenic were 11.0 +/- 0.19 and 5.8 +/- 1.2 for P4502CAA and P4502C2, respectively. These results suggest that there may be subtle differences in the structure of 2C2 and 2CAA and also indicate that P450 may be important in the generation of potentially active epoxide metabolites of unsaturated fatty acids other than arachidonic acid.  相似文献   

5.
1(S),3(R)-dihydroxy-20(R)-(5'-ethyl-5'-hydroxy-hepta-1'(E),3' (E)-dien-1'-yl)-9,10-secopregna-5(Z),7(E),10(19)-triene (EB1089) is a novel synthetic analog of 1 alpha,25-dihydroxyvitamin D [1,25-(OH)2D3] with potential for use in the treatment of hyperproliferative disorders. It has an altered side-chain structure compared to 1,25-(OH)2D3, featuring 26,27 dimethyl groups, insertion of an extra carbon atom (24a) at C-24, and two double bonds at C-22,23 and C-24,24a. In vitro metabolism of EB1089 was studied in a human keratinocyte cell model, HPK1A-ras, previously shown to metabolize 1,25-(OH)2D3. Four metabolites were formed, all of which possessed the same UV chromophore as EB1089, indicating the retention of the side-chain conjugated double bond system. Two metabolites were present in sufficient quantities to identify them as 26-hydroxy EB1089 (major product) and 26a-hydroxy EB1089 (minor product), based on mass spectral analysis and cochromatography with synthetic standards. Similar metabolites were generated in vivo and using a liver postmitochondrial fraction in vitro (Kissmeyer et al., companion paper). Studies with the human hepatoma Hep G2 gave rise to 2 isomers of 26-hydroxy EB1089. Studies using ketoconazole, a general cytochrome P450 inhibitor, implicated cytochrome P450s in the formation of the EB1089 metabolites. COS-1 transfection cell experiments using vectors containing CYP27 and CYP24 suggest that these cytochrome P450s are probably not involved in 26- or 26a-hydroxylation of EB1089. Other experiments that examined the HPK1A-ras metabolism of related analogs containing only a single side-chain double bond: 1(S),3(R)-dihydroxy-20(R)-(5'-ethyl-5'-hydroxy-hepta-1' (E)-en-1'-yl)-9,10-secopregna-5(Z),7(E),10(19)-triene (MC1473; double bond at C-22,23) and 1(S),3(R)-dihydroxy-20(R)-(5'-ethyl-5'-hydroxy-hepta-3'(E)-en-1'-yl)-9, 10-secopregna-5(Z),7(E),10(19)-triene (MC1611; double bond at C-24,24a) revealed that the former compound was subject to 24-hydroxylation and the latter compound was mainly 23-hydroxylated. Metabolism experiments involving EB1089, MC1473, and MC1611 in competition with [1 beta-3H]1,25-(OH)2D3 in HPK1A-ras confirmed that CYP24 is probably not involved in the metabolism of EB1089 whereas, in the case of MC1473 and MC1611, it does appear to carry out side-chain hydroxylation. Our interpretation is that the conjugated double bond system in the side-chain of EB1089 is responsible for directing the target cell hydroxylation to the distal positions, C-26 and C-26a. We conclude that EB1089 is slowly metabolized via unique in vitro metabolic pathways, and that these features may explain the relative stability of EB1089 compared to other analogs in vivo.  相似文献   

6.
The total synthesis of the naturally occurring (Z)-2-methoxy-5-hexadecenoic acid and (Z)-2-methoxy-6-hexadecenoic acid was accomplished using as a key step Mukaiyama's trimethylsilyl cyanide addition to 4- and 5-pentadecenal, respectively. These syntheses further confirm the structures of the natural marine fatty acids and corroborate their cis double-bond stereochemistry. The title compounds were antimicrobial against the Gram-positive bacteria Staphylococcus aureus (MIC 0.35 micromol/mL) and Streptococcus faecalis (MIC 0.35 micromol/mL).  相似文献   

7.
Three species of brown algae, Laminaria sinclairii, L. saccharina and L. setchellii, have been investigated for the presence of oxylipins. From one, L. sinclairii, three new divinyl ether fatty acids have been characterized as methyl ester derivatives (methyl 12-[1'(Z),3'(Z)-hexadienyloxy]-6(Z), 9(Z),11(E)-dodecatrienoate, methyl 12-[1'(Z),3'(Z)-hexadienyloxy]-9(Z), 11(E)-dodecadienoate, and methyl 14-[1'(Z),3'(Z)-hexadienyloxy]- 5(Z),8(Z),11(Z),13(E)-tetradecatetraenoate) by a variety of spectroscopic methods. In addition, one new [13(S)-hydroxy-6(Z),9(Z),11(E),15(Z)-octadecatetraenoic acid] and four known monohydroxy polyunsaturated fatty acids have been isolated from all three species as their methyl ester derivatives. The occurrence of these compounds in brown algae strongly suggests that these organisms possess an active lipoxygenase(s) with omega 6 specificity.  相似文献   

8.
The effects of different dietary oils on the fatty acid compositions of liver phospholipids and the desaturation and elongation or [1-14C]18:3n-3 and [1-14C]18:2n-6 were investigated in isolated hepatocytes from Atlantic salmon. Atlantic salmon smolts were fed diets containing either a standard fish oil (FO) as a control diet, a 1:1 blend of Southern Hemisphere marine oil and tuna orbital oil (MO/TO), sunflower oil (SO), borage oil (BO), or olive oil (OO) for 12 wk. The SO and BO diets significantly increased the percentages of 18:2n-6, 18:3n-6, 20:2n-6, 20:3n-6, and total n-6 polyunsaturated fatty acids (PUFA) in salmon liver lipids in comparison with the FO diet. The BO diet also increased the percentage of 20:4n-6. Both the SO and BO diets significantly reduced the percentages of all n-3 PUFA in comparison with the FO diet. The OO diet significantly increased the percentages of 18:1n-3, 18:2n-6, total monoenes, and total n-6 PUFA in liver lipids compared to the FO diet, and the percentages of all n-3 PUFA were significantly reduced. With [1-14C]18:3n-3, the recovery of radioactivity in the products of delta 6 desaturation was significantly greater in the hepatocytes from salmon fed SO, BO, and OO in comparison with the FO diet. The BO diet also increased the recovery of radioactivity in the products of delta 5 desaturation. Only the BO diet significantly affected the desaturation of [1-14C]18:2n-6, increasing recovery of radioactivity in both delta 6- and delta 5-desaturation products. In conclusion, dietary BO, enriched in gamma-linolenic acid (18:3n-6), significantly increased the proportions of both 20:3n-6 and 20:4n-6 in salmon liver phospholipids and also significantly increased the desaturation of both 18:2n-6 and 18:3n-3 in salmon hepatocytes. The possible relationships between dietary fatty acid composition, tissue phospholipid fatty acid composition, and desaturation/elongation activities are discussed.  相似文献   

9.
Previous studies have shown that ingested fatty alcohols are absorbed as fatty acids and fatty acid esters, particularly triglycerides. The present study was carried out to determine whether fatty alcohols are also transported as 0-alkyl glyceryl ethers, alk-1-enyl glyceryl ethers, and as wax esters. Oxidation of fatty alcohols to other lipids was assessed by using a mixture of [1-3H] hexadecanol and [1-14C] hexadecanol of predetermined ratio. The results indicate that the absorption of fatty alcohol, and of its transport forms, parallels the absorption of labeled fatty acids. Six to 25% of plasma radioactivity was present as 1-0-alkyl diacylglyceryl ethers with a smaller proportion of ether lipids in the phospholipid fraction. In addition, 4-13% of the ingested hexadecanol appeared in the plasma as a material having the chromatographic properties of wax ester. Fatty alcohols were not detected in the plasma as alk-1-enyl lipids.  相似文献   

10.
Varanic acid (3 alpha, 7 alpha, 12 alpha, 24-tetrahydroxy-5 beta-cholestanoic acid; 24-OH-THCA) is almost the sole component of bile acids in the bile of Bombina orientalis. To examine in the mechanism of the formation of 24-OH-THCA, radiolabeled (25R)- and (25S)-3 alpha, 7 alpha, 12 alpha-trihdroxy-5 beta-cholestanoic acids [(25R)- and (25S)-THCA] and (24E)-3 alpha, 7 alpha, 12 alpha-trihdroxy-5 beta-cholest-24-enoic acid (delta 24-THCA) were administered intraperitoneally to B. orientalis, gallbladder bile was collected after 24 h, and bile acids were subsequently extracted. Then the bile acids were analyzed by means of radio thin-layer chromatography and radio high-performance liquid chromatography after conversion to p-bromophenacyl ester derivatives. Although delta 24-THCA was not converted to 24-OH-THCA, (25R)-THCA and (25S)-THCA were transformed to (24R,25R)-24-OH-THCA and (24R,25S)-24-OH-THCA, respectively. These results strongly suggest that 24-OH-THCA was transformed via direct hydroxylation of the saturated side chain of THCA, not via hydration to an alpha, beta-unsaturated acid, delta 24-THCA, in B. orientalis.  相似文献   

11.
We examined the delta 4 (n-6) desaturation and the fatty acid composition of liver microsomes in the insulin-dependent spontaneously diabetic Wistar Bio-Breeding (BB) rat. The desaturation of adrenic acid to n-6 docosapentaenoic acid was decreased in the normo- and hyperglycemic diabetic rats. Insulin treatment with 1.0 IU. 100 g body weight-1 twice a day for 2 days restored the reduced activity during the hypoglycemic period. The pattern of responses was similar to that of linoleic acid delta 6 and dihomo-gamma-linolenic acid delta 5 desaturases, with a non-parallel relationship between the desaturation system and the glycemia. The microsomal fatty acid composition of BB rat liver reflected only partially to the delta 4 desaturation at different states of glycemia. Factors other than impaired desaturation system are involved in the fatty acid metabolism of spontaneously diabetic rats.  相似文献   

12.
The pharmacology of (2S,4R)-4-methylglutamic acid, (2S,4S)-4-methylglutamic acid and (S)- and (R)-4-methyleneglutamic acids (obtained in high chemical and enantiomeric purity from racemic 4-methyleneglutamic acid by chiral HPLC using a Crownpak CR(+) column), was examined in binding experiments using rat brain ionotropic glutamate receptors, and in functional assays using cloned metabotropic glutamate (mGlu) receptors. As a notable result of these studies, (2S,4R)-4-methylglutamic acid and (2S,4S)-4-methylglutamic acid were shown to be selective for kainic acid receptors and mGlu receptors (subtypes 1alpha and 2), respectively, whereas (S)-4-methyleneglutamic acid showed high but rather non-selective affinity for the (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA), kainic acid, NMDA and mGlu receptors (subtypes 1alpha and 2). Although none of the compounds were specific for any of the receptor subtypes, the results demonstrate that each of these structurally related compounds has a distinct pharmacological profile.  相似文献   

13.
The trifunctional oxygenase clavaminate synthase 2 (CS2) catalyses a hydroxylation reaction and two coupled oxidative reactions, a cyclization and a desaturation, in a nonsuccessive manner. A series of experiments was performed to elucidate the number of CS2 catalytic site(s) utilized in the three oxidative transformations. The stoichiometry of FeII required by CS2 was determined to be one ion per catalytically active enzyme molecule for the cyclization/desaturation reactions, and an affinity label, modeled after the substrate for the hydroxylation reaction, was synthesized and effectively inactivated CS2. The kinetics of this process showed concentration dependence and substrate protection consistent with active site direction. In addition, when this affinity label was incubated with CS2, the enzyme showed the same first-order rate of activity loss over time in both the hydroxylation activity assay and the cyclization/desaturation activity assay. These results support the view that all of the reactions catalysed by CS2 occur in a single catalytic site containing one FeII.  相似文献   

14.
The synthesis and SAR of a series of (Z)-(+/-)-1-azabicyclo[2.2. 1]heptan-3-one, O-(3-aryl-2-propynyl)oximes are described. The biochemistry and pharmacology of 24Z (PD 142505) and its enantiomers are highlighted. 24Z is functionally an m1-selective muscarinic agonist. Efficacy and m1 selectivity reside in the R enantiomer, (R)-24Z (CI-1017).  相似文献   

15.
Substrate specificity and other properties of a fatty acid monooxygenase system in kidney microsomes of the Japanese house musk shrew (Suncus murinus) were examined. The suncus kidney microsomes catalyzed the hydroxylation of various saturated and unsaturated fatty acids to the omega- and (omega-1)-hydroxy derivatives. Laurate was most effectively hydroxylated among saturated and unsaturated fatty acids. The specific activity (53.79 +/- 5.59 [mean +/- SD, n = 6] nmol/nmol cytochrome P450/min) of laurate in suncus kidney microsomes was very high compared with that in liver and kidney microsomes of other species. C18 unsaturated fatty acids were converted to epoxides by a cytochrome P450-dependent fatty acid monooxygenase system in suncus kidney microsomes, in addition to omega- and (omega-1)-hydroxylation products. The monooxygenase system metabolized arachidonic acid only to omega- and (omega-1)-hydroxylation products, not to epoxidation products.  相似文献   

16.
The substrate oxidation profiles of Sphingomonas yanoikuyae B1 biphenyl-2,3-dioxygenase and cis-biphenyl dihydrodiol dehydrogenase activities were examined with 1,2-dihydronaphthalene and various cis-diols as substrates. m-Xylene-induced cells of strain B1 oxidized 1,2-dihydronaphthalene to (-)-(1R,2S)-cis-1,2-dihydroxy-1,2-3,4-tetrahydronaphthalene as the major product (73% relative yield). Small amounts of (+)-(R)-2-hydroxy-1,2-dihydronaphthalene (15%), naphthalene (6%), and alpha-tetralone (6%) were also formed. Strain B8/36, which lacks an active cis-biphenyl dihydrodiol dehydrogenase, formed (+)-(1R,2S)-cis-1,2-dihydroxy-1,2-dihydronaphthalene (51%), in addition to (-)-(1R,2S)-cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene (44%) and (+)-(R)-2-hydroxy-1,2-dihydronaphthalene (5%). The cis-biphenyl dihydrodiol dehydrogenase of strain B1 oxidized both enantiomers of cis-1,2-dihydroxy-1,2-dihydronaphthalene, but only the (+)-(1S,2R)-enantiomers of cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene and cis-1,2-dihydroxy-3-phenylcyclohexa-3,5-diene. The results show that biphenyl dioxygenase expressed by S. yanoikuyae catalyzes dioxygenation, monooxygenation, and desaturation reactions with 1,2-dihydronaphthalene as the substrate, and cis-biphenyl dihydrodiol dehydrogenase catalyzes the enantioselective dehydrogenation of (+)-(1S,2R)-cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene and (+)-(1S,2R)-cis-1,2-dihydroxy-3-phenylcyclohexa-3,5-diene.  相似文献   

17.
N-acetyl tyrosine (NAT) is hydroxylated by mushroom tyrosinase and the N-acetyl dopa formed is oxidized by the enzyme to N-acetyl dopaquinone (lambda max = 390 +/- 10 nm). H2O2 and NH2OH each shortened the lag period of NAT hydroxylation by the enzyme. H2O2 had an effect on the changes with time in the spectrum of product(s) formed and on the spectrum of the final product(s) obtained when NAT was hydroxylated by mushroom tyrosinase, in a manner suggesting that H2O2 converts N-acetyl dopaquinone to a pink-violet product(s) (lambda max = 490 nm), whereas such a product(s) was not formed in the absence of H2O2. A pink-violet product(s) (lambda max 490 +/- 20 nm) was also formed when NAT was hydroxylated by mushroom tyrosinase in the presence of NH2OH or para amino benzoic acid (PABA), probably as a result of an interaction between N-acetyl dopaquinone and NH2OH or PABA forming mono- or di-oximes. Kojic acid (5-hydroxy-2-hydroxymethyl)-4H-pyran-4-one) inhibited effectively the rate of NAT hydroxylation by mushroom tyrosinase in the absence or presence of H2O2. When NAT was oxidized by the enzyme in the absence of kojic acid, N-acetyl dopaquinone was formed at once and a shoulder at 490-530 nm appeared later. Under identical conditions but in the presence of kojic acid, a yellow product(s), characterized by a peak at 320 +/- 10 nm, was detected, suggesting that N-acetyl dopaquinone oxidizes kojic acid to the yellow product(s). Maltol (3-hydroxy-2-methyl-4H-pyran-4-one), a gamma-pyrone derivative structurally related to kojic acid, also inhibited the rate of NAT hydroxylation by mushroom tyrosinase. The addition of maltol at the plateau phase of the reaction resulted in an immediate decline in absorbance at 400 nm, suggesting that maltol conjugates with N-acetyl dopaquinone, yielding a product(s) characterized by a lower extinction coefficient at 400 nm than that of N-acetyl dopaquinone alone. The final brown-red product(s) formed when NAT was hydroxylated by mushroom tyrosinase was bleached in the presence of ascorbic acid or H2O2.  相似文献   

18.
In the monocytic THP-1 cells, the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor simvastatin (5 microM) enhances the conversion of exogenous linoleic (18:2 n-6) and eicosapentaenoic (20:5 n-3) acids to their long-chain polyunsaturated fatty acid (LC-PUFA) derivatives, and this effect is associated with changes in the desaturation steps. In addition, formation of monounsaturated fatty acids from endogenously synthesized precursors is increased. These metabolic changes lead to elevated LC-PUFA and fatty acid (FA) unsaturation in cells. The effects of simvastatin on FA metabolism are associated with increased synthesis of triglycerides from glycerol. The dose-effect relationships for the activity of simvastatin on total linoleic acid (LA) conversion and cholesterol synthesis reveal that enhancement of PUFA metabolism is already maximal at 0.5 microM simvastatin, whereas cholesterol synthesis is further inhibited by concentrations of simvastatin up to 5 microM. The effects of 5 microM simvastatin on PUFA metabolism are partially prevented by mevalonate (1 mM) and geranylgeraniol (5 microM) but not by farnesol (10 microM). These data indicate that HMG-CoA inhibitors have profound effects on PUFA metabolism, and that the pathways for cholesterol and PUFA synthesis are mutually modulated.  相似文献   

19.
[3-(14)C] Eicosatrienoic acid (delta11,14,17) chemically synthesized from [-(14)C] linolenic acid was injected intracranially into 14-day old rats and sacrificed 8 hr later. The analysis of brain fatty acids by radio-gas liquid chromatography before and after ozonolysis showed that the tetraene fraction consisted of a desaturated product, delta5,11,17-20:4, and its elongated product, delta7,13,16,19-22:4. Both of these products, with a combined total of 61% of the total radioactivity recovered in the tetraene fraction, contain a nonmethylene interrupted double bond system and, therefore, are unsuitable for further desaturation. The other two components, delta6,9,12,15-18:4 and delta8,11,14,14-20:4, must have been formed from delta9,12,15-18:3, formed by retroconversion of the starting material 20:3, followed by desaturation and elongation. These results suggest a lack of delta8 desaturase in the developing brain, leading to formation of delta5,11,14,17-20:4 rather than delta8,11,14,17-20:4. However, the nonmethylene interrupted doulbe bond isomer does not restrict chain elongation.  相似文献   

20.
The aim of the present study was to elucidate the effects of a single dose of 3-thia fatty acids (tetradecylthioacetic acid and 3-thiadicarboxylic acid) over a 24-hr study period on the expression of genes related to peroxisomal and mitochondrial beta-oxidation in liver of rats. The plasma triglyceride level decreased at 2-4 hr, 4-8 hr, and 8-24 hr, respectively, after a single dose of 150, 300, or 500 mg of 3-thia fatty acids/kg body weight. Four to eight hours after administration of 3-thia fatty acids, a several-fold-induced gene expression of peroxisomal multifunctional protein, fatty acyl-CoA oxidase (EC 1.3.3.6), fatty acid binding protein, and 2,4-dienoyl-CoA reductase (EC 1.3.1.43) resulted, concomitant with increased activity of 2,4-dienoyl-CoA reductase and fatty acyl-CoA oxidase. The expression of carnitine palmitoyltransferase-I and carnitine palmitoyltransferase-II increased at 2 and 4 hr, respectively, although at a smaller scale. In cultured hepatocytes, 3-thia fatty acids stimulated fatty acid oxidation after 4 hr, and this was both L-carnitine- and L-aminocarnitine-sensitive. The hepatic content of eicosapentaenoic acid and docosahexaenoic acid decreased throughout the study period. In contrast, the hepatic content of oleic acid tended to increase after 24 hr and was significantly increased after repeated administration of 3-thia fatty acids. Similarly, the expression of delta9-desaturase was unchanged during the 24-hr study, but increased after feeding for 5 days. To conclude, carnitine palmitoyltransferase-I expression seemed to be induced earlier than 2,4-dienoyl-CoA reductase and fatty acid binding protein, and not later than the peroxisomal fatty acyl-CoA oxidase. The expression of delta9-desaturase showed a more delayed response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号