首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transparent conducting fluorine-doped tin oxide (SnO2:F) films have been deposited on glass substrates by pulsed laser deposition. The structural, electrical and optical properties of the SnO2:F films have been investigated as a function of F-doping level and substrate deposition temperature. The optimum target composition for high conductivity was found to be 10 wt.% SnF2 + 90 wt.% SnO2. Under optimized deposition conditions (Ts = 300 °C, and 7.33 Pa of O2), electrical resistivity of 5 × 10− 4 Ω-cm, sheet resistance of 12.5 Ω/□, average optical transmittance of 87% in the visible range, and optical band-gap of 4.25 eV were obtained for 400 nm thick SnO2:F films. Atomic force microscopy measurements for these SnO2:F films indicated that their root-mean-square surface roughness ( 6 Å) was superior to that of commercially available chemical vapor deposited SnO2:F films ( 85 Å).  相似文献   

2.
Pt-PtOx thin films were prepared on Si(100) substrates at temperatures from 30 to 700°C by reactive r.f. magnetron sputtering with platinum target. Deposition atmosphere was varied with O2/Ar flow ratio. The deposited films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. Resistively of the deposited films was measured by d.c. four probe method. The films mainly consisted of amorphous PtO and Pt3O4 (or Pt2O3) below 400°C, and amorphous Pt was increased in the film as a deposition temperature increased to 600°C. When deposition temperature was thoroughly increased, (111) oriented pure Pt films were formed at 700°C. Compounds included in the films strongly depended on substrate temperature rather than O2/Ar flow ratio. Electrical resistivity of Pt-PtOx films was measured to be from the order of 10−1 Ω cm to 10−5 Ω cm, which was related to the amount of Pt phase included in the deposited films.  相似文献   

3.
Titanium oxide (TiO2) thin films were deposited onto glass substrates by means of spray pyrolysis method using methanolic titanyl acetyl acetonate as precursor solution. The thin films were deposited at three different temperatures namely 350, 400 and 450 °C. As-deposited thin films were amorphous having 100–300 nm thickness. The thin films were subsequently annealed at 500 °C in air for 2 h. Structural, optical and electrical properties of TiO2 thin films have been studied. Polycrystalline thin films with rutile crystal structure, as evidenced from X-ray diffraction pattern, were obtained with major reflexion along (1 1 0). Surface morphology and growth stages based on atomic force microscopy measurements are discussed. Electrical properties have been studied by means of electrical resistivity and thermoelectric power measurements. Optical study shows that TiO2 possesses direct optical transition with band gap of 3.4 eV.  相似文献   

4.
HfO2 thin films with columnar microstructure were deposited directly on ZnS substrates by electron beam evaporation process. SiO2 thin films, deposited by reactive magnetron sputtering, were used as buffer layers, HfO2 thin films of granular microstructure were obtained on SiO2 interlayer by this process. X-ray diffraction patterns demonstrate that the as-deposited HfO2 films are in an amorphous-like state with small amount of crystalline phase while the HfO2 films annealed at 450 °C in O2 for 30 min and in Ar for 150 min underwent a phase transformation from amorphous-like to monoclinic phase. Antireflection effect in certain infrared wave band, such as 3–6 μm, 4–12 μm, 4–8 μm and 3–10 μm, can be observed, which was dependent on the thickness of thin films. The cross-sectional images of HfO2 films, obtained by field emission scanning electron microscopy, revealed that there was no distinct morphological change upon annealing.  相似文献   

5.
Thin tantalum oxide films were deposited using atomic layer deposition from TaCl5 and H2O at temperatures in the range 80–500 °C. The films deposited at temperatures below 300 °C were predominantly amorphous, whereas those grown at higher temperatures were polycrystalline containing the phases TaO2 and Ta2O5. The oxygen to tantalum mass concentration ratio corresponded to that of TaO2 at all growth temperatures. The optical band gap was close to 4.2 eV for amorphous films and ranged from 3.9 to 4.5 eV for polycrystalline films. The refractive index measured at λ = 550 nm increased from 1.97 to 2.20 with an increase in growth temperature from 80 to 300 °C. The films deposited at 80 °C showed low absorption with absorption coefficients of less than 100 cm−1 in the visible region.  相似文献   

6.
RuOx thin films have been deposited by reactive sputtering in an O2/Ar atmosphere. The films were characterized for their stress and resistivity as a function of deposition temperature (room temperature, 300°C) and the O2 content (25–100%) in the sputtering gas. Additionally, the stresses in these films were determined as a function of annealing temperature (up to 600°C) using an in-situ curvature measurement technique. The as-deposited films were found to be under a state of compressive stress for all deposition conditions. The compressive stresses sharply increased with increasing deposition temperature from a value of around 200 MPa at 200°C to 1400 MPa at 300°C. This dramatic increase has been attributed to differences in microstructure at these deposition temperatures. The microstructural differences also led to the widely differing stress-temperature behavior during annealing of these films. For films deposited at temperatures lower than 200°C, the annealing process resulted in a decrease in the compressive stress and resistivity of the films. However, films deposited at a temperature of 300°C did not show any changes in the compressive stress or resistivity after annealing. The results of this study can be used to deposit RuOx thin films with low resistivity and minimal stresses.  相似文献   

7.
SnS and SnS2 thin films have been prepared by the dip technique. In this technique, a substrate was dipped into an alcoholic solution of the corresponding chloride and thiourea and then withdrawn vertically at a controlled speed, and finally baked in a high temperature furnace at atmospheric condition. XRD and SEM data suggest that good quality SnS and SnS2 films are obtained at a baking temperature of 300 and 360°C, respectively. Values of band gap for SnS and SnS2 obtained from spectral response of photoconductivity are 1.4 and 2.4 eV, respectively. The indirect allowed band gap values for SnS2 film obtained from optical absorption measurements are 1.95 and 2.05 eV. Open-air annealing of both SnS and SnS2 films at 400°C converts them to transparent conducting SnO2.  相似文献   

8.
AgInSnxS2−x (x = 0–0.2) polycrystalline thin films were prepared by the spray pyrolysis technique. The samples were deposited on glass substrates at temperatures of 375 and 400 °C from alcoholic solutions comprising silver acetate, indium chloride, thiourea and tin chloride. All deposited films crystallized in the chalcopyrite structure of AgInS2. A p-type conductivity was detected in the Sn-doped samples deposited at 375 °C, otherwise they are n-type. The optical properties of AgInSnxS2−x (x < 0.2) resemble those of chalcopyrite AgInS2. Low-temperature PL measurements revealed that Sn occupying an S-site could be the responsible defect for the p-type conductivity observed in AgInSnxS2−x (x < 2) thin films.  相似文献   

9.
Synthesis of AlN by reactive sputtering   总被引:2,自引:0,他引:2  
We present a systematic study of the sub-band gap optical absorption coefficients (hν) in the range 1.2–6 eV vs. deposition-temperature (Ts from 27 to 450°C) films deposited on silica by 13.6 MHz magnetron sputtering of an Al target with 53 and 72% N2 in the reactive mixture. X-ray diffraction, infrared absorption and Raman diffusion are also presented, mainly on films deposited on Si in the same run to help in the characterisation of the films. All signals are specific of AlN polycrystalline films, which are of better quality when deposited with 72% N2. The lowest sub-band gap optical absorption around 5×102 cm−1 is obtained for deposition on silica at Ts=300°C with 72% N2 and is close to that of heteroepitaxial films deposited on sapphire.  相似文献   

10.
We have investigated the electrical and optical properties of Ba(HfxTi1 − x)O3 (x = 0, 0.1, 0.2, 0.3, 0.4) (BHT) thin films deposited on platinized silicon and fused quartz substrates. Analyses of the X-ray diffraction patterns reveal that with the increase in Hf contents there is a systematic increase of the lattice constants of BHT films. Irrespective of the measurement frequencies the dielectric constants was found to be systematically decreased, whereas their frequency dispersion was found to be reduced with increasing Hf contents. The leakage current data measured using a metal-insulator–metal configuration reveal that the Schottky emission is the dominant leakage current mechanism in these films. BHT films, deposited on transparent fused quartz substrates, were also characterized in terms of their optical properties. For this purpose the transmittance of the undoped as well as Hf doped barium titanate thin films was measured as a function of wavelength in the range of 290 nm to 800 nm. The transmission spectra were analysed to estimate the wavelength dependence of the refractive indices/extinction coefficients as well as the variation of optical band gap of these films. With the increase of Hf contents, a systematic increase of the band gap [from 3.65 eV (undoped film) to 4.15 eV (40 at.% Hf doped barium titanate film)] was observed. The reduction of the leakage current with increasing hafnium substitution is discussed on the basis of an increasing Schottky barrier height and due to a simultaneous increase in the band gap of the material.  相似文献   

11.
(Ti, Al)N films have drawn much attention as alternatives for TiN coatings, which are oxidized easily in air above 500 °C. We have investigated the effect of Al content on the oxidation resistance of (Ti1 − xAlx)N films prepared by r.f. reactive sputtering.

(Ti1 − xAlxN films (O ≤ x ≤ 0.55) were deposited onto fused quartz substrates by r.f. reactive sputtering. Composite targets with five kinds of Al-to-Ti area ratio were used. The sputtering gas was Ar (purity, 5 N) and N2 (5 N). The flow rate of Ar and N2 gas was kept constant at 0.8 and 1.2 sccm, respectively, resulting in a sputtering pressure of 0.4 Pa. The r.f. power was 300 W for all experiments. Substrates were not intentionally heated during deposition. The deposited films (thickness, 300 nm) were annealed in air at 600 900 °C and then subjected to X-ray diffractometer and Auger depth profiling.

The as-deposited (Ti1 − xAlx)N films had the same crystal structure as TiN (NaCl type). Al atoms seemed to substitute for Ti in lattice sites. The preferential orientation of the films changed with the Al content of the film, x. Oxide layers of the films grew during annealing and became thicker as the annealing temperature increased. The thickness of the oxide layer grown on the film surface decreased with increasing Al content in the film. For high Al content films an Al-rich oxide layer was grown on the surface, which seemed to prevent further oxidation. All of the films, however, were oxidized by 900 °C annealing, even if the Al content was increased up to 0.55.  相似文献   


12.
Metal-organic chemical vapour deposition (MOCVD) of various phases in PrOx system has been studied in relation with deposition temperature (450–750 °C) and oxygen partial pressure (0.027–100 Pa or 0.2–750 mTorr). Depositions were carried out by pulsed liquid injection MOCVD using Pr(thd)3 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) precursor dissolved in toluene or monoglyme. By varying deposition temperature and oxygen partial pressure amorphous films or various crystalline PrOx phases (Pr2O3, Pr7O12, Pr6O11) and their mixtures can be grown. The pure crystalline Pr2O3 phase grows only in a narrow range of partial oxygen pressure and temperature, while high oxygen pressure (40–100 Pa) always leads to the most stable Pr6O11 phase. The influence of annealing under vacuum at 750 °C on film phase composition was also studied. Near 90% step coverage conformity was achieved for PrOx films on structured silicon substrates with aspect ratio 1:10. In air degradation of Pr2O3 films with transformation to Pr(OH)3 was observed in contrast to Pr6O11 films.  相似文献   

13.
P.C. Joshi  S.B. Desu 《Thin solid films》1997,300(1-2):289-294
Polycrystalline BaTiO3 thin films having the perovskite structure were successfully produced on platinum coated silicon, bare silicon, and fused quartz substrate by the combination of the metallo-organic solution deposition technique and post-deposition rapid thermal annealing treatment. The films exhibited good structural, electrical, and optical properties. The electrical measurements were conducted on metal-ferroelectric-metal (MFM) and metal-ferroelectric-semiconductor (MFS) capacitors. The typical measured small signal dielectric constant and dissipation factor at a frequency of 100 kHz were 255 and 0.025, respectively, and the remanent polarization and coercive field were 2.2 μC cm−2 and 25 kV cm−1, respectively. The resistivity was found to be in the range 1010–1012 Ω·cm, up to an applied electric field of 100 kV cm−1, for films annealed in the temperature range 550–700 °C. The films deposited on bare silicon substrates exhibited good film/substrate interface characteristics. The films deposited on fused quartz were highly transparent. An optical band gap of 3.5 eV and a refractive index of 2.05 (measured at 550 nm) was obtained for polycrystalline BaTiO3 thin film on fused quartz substrate. The optical dispersion behavior of BaTiO3 thin films was found to fit the Sellmeir dispersion formula well.  相似文献   

14.
Atmospheric pressure chemical vapour deposition of tin monoselenide and tin diselenide films on glass substrate was achieved by reaction of diethyl selenide with tin tetrachloride at 350–650 °C. X-ray diffraction showed that all the films were crystalline and matched the reported pattern for SnSe and/or SnSe2. Wavelength dispersive analysis by X-rays show a variable Sn:Se ratio from 1:1 to 1:2 depending on conditions. The deposition temperature, flow rates and position on the substrate determined whether mixed SnSe–SnSe2, pure SnSe or pure SnSe2 thin films could be obtained. SnSe films were obtained at 650 °C with a SnCl4 to Et2Se ratio greater than 10. The SnSe films were silver–black in appearance and adhesive. SnSe2 films were obtained at 600–650 °C they had a black appearance and were composed of 10 to 80 μm sized adherent crystals. Films of SnSe only 100 nm thick showed complete absorbtion at 300–1100 nm.  相似文献   

15.
Zirconium doped indium oxide thin films were deposited by the atomic layer deposition technique at 500 °C using InCl3, ZrCl4 and water as precursors. The films were characterised by X-ray diffraction, energy dispersive X-ray analysis and by optical and electrical measurements. The films had polycrystalline In2O3 structure. High transparency and resistivity of 3.7×10−4 Ω cm were obtained.  相似文献   

16.
The preparation of very thin indium tin oxide (ITO) films with extremely high transparency and suitable resistivity, as well as resistivity stability for long term use, is described. In order to obtain these properties, amorphous suboxide films were first prepared and then annealed. Suboxide films with a thickness of 20 to 30 nm were prepared on PET film and glass substrates at a temperature of 60 °C using In2O3---SnO2 targets with a SnO2 content of 0 to 10 wt% by DC magnetron sputtering in a pure argon gas atmosphere. The films were annealed at a temperature of 150 °C for 1 to 100 h in air. The resistivity of films on PET films was, depending on the SnO2 content, on the order of 10−3 ω cm. An average transmittance above 97% in the visible wavelength range and a resistivity of about 4 × 10−3 ω cm, as well as resistivity stability, were attained in ITO films with a SnO2 content of about 1 wt% prepared on PET films by the low-temperature process. It is thought that these properties result from crystallization which occurred during the annealing, duration up to about 25 h.  相似文献   

17.
The microwave dielectric properties and microstructures of Ba(Mg1/3Ta2/3)O3 (BMT) ceramics sintered at low temperatures with 2–3 wt.% NaF additives were investigated. BMT ceramics sintered at 1340 °C for 3–12 h showed dielectric constants (r) of 25.5–25.7, Qf values of 41 500–50 400 GHz and temperature coefficients of the resonator frequency (τf) of 10.9–21.4 ppm °C−1. The variation of sintering time almost had no effect on the dielectric constant. The Qf value increased and the τf decreased with increasing sintering time. The ordering degree of Mg2+ and Ta5+ at B-sites increased with increasing sintering time.  相似文献   

18.
La0.5Sr0.5CoO3−δ (LSCO) thin films were deposited on yttria stabilized zirconia (YSZ) substrates by pulsed laser deposition (PLD) for application to thin film solid oxide fuel cell electrodes. During the deposition, the substrate temperature was varied from 450 to 750°C, and the oxygen pressure in the chamber was varied from 80 to 310 mTorr. Films deposited at 650°C and an oxygen background pressure of 150 mTorr were mostly (100) oriented. Deposition at higher temperatures or under lower oxygen pressures lead to mostly (110) oriented films. Films with low electrical resistivity of 10−3 Ω·cm were obtained.  相似文献   

19.
Cadmium sulphide (CdS) nanostructured materials were synthesized by a wet chemical route without using any capping agent. X-ray diffraction pattern showed the typical interplanar spacings corresponding to the cubic phase of CdS. The peaks were identified to originate from (100), (220), and (311) planes of CdS, respectively. Transmission electron microscopy studies showed the nanowire formation with an average length 1-5 μm and the average diameter was in the range 25-30 nm. UV-visible transmission spectrum of the films deposited on glass substrates was recorded in the region 300-800 nm at room temperature. Transmission spectrum showed 75%-90% transmittance in the visible region. The values of direct band gap were obtained as 3.07 eV and 3.00, 2.89, 2.86 eV for unannealed and annealed at 100°C, 150°C, 200°C films, respectively. It showed the blue shift with respect to the bulk value. Room temperature photoluminescence was also measured, which showed a broad band lying in the range 510-625 nm.  相似文献   

20.
The changes of the crystallinity of μc-Si phase are studied in samples deposited with hydrogen dilution ratio, H2/SiH4, from 9.0 to 19.0 by hot-wire CVD (Cat-CVD). In the samples deposited at filament temperature, Tf, of 1850 °C, the crystalline fraction and the crystallite size of μc-Si phase increased with increasing the H2/SiH4. The carbon content, C/(Si+C), was almost constant. In the XRD patterns, the intensity of Si(1 1 1) peak decreased and that of Si(2 2 0) peak increased with increasing the H2/SiH4. In the samples deposited at Tf of 2100 °C with H2/SiH4 over 11.4, the μc-Si phase was not formed and the C/(Si+C) increased. The growth mechanism of μc-Si in hetero-structured SiCx alloy films is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号