首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several new systems of Bi0.5Na0.5TiO3-based lead-free piezoelectric ceramics were proposed based on the design of the multiple complex in the A-site of ABO3 compounds. These ceramics were prepared by conventional ceramic techniques. The comparison of the piezo- and ferroelectric properties of these ceramics with those of the best properties of the Bi0.5Na0.5TiO3-based lead-free piezoelectric ceramics published recently shows that these ceramics of the new systems have better ferroelectric and piezoelectric performance, and better temperature characteristic of the properties. Among these materials, Bi0.5(Na1?x?y K x Li y )0.5TiO3 possesses higher piezoelectric constant (d 33?=?230.8 pC/N), higher electromechanical couple factor (k p?=?0.41), larger remanent polarization (P r?=?40 μC/cm2) and a better PE hysteresis loop below 200 °C. Practical devices such as ceramic middle frequency filters and buzzers have been made by using these lead-free piezoelectric ceramics.  相似文献   

2.
The piezoelectric properties of (1?x)(Bi0.5Na0.5)TiO3-xBaTiO3 ceramics were reported and their piezoelectric properties reach extreme values near the MPB (about x?=?0.06). The X-ray analysis of (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics for all compositions exhibited a pure perovskite structure without any secondary phase. Within a certain ratio of contents, the co-doped ceramics enhanced piezoelectric coefficient (d 33 ), lowered the dielectric loss, and increased the sintered density. The temperature dependence of relative dielectric permittivity (K 33 T ) reveals that the solid solutions experience two phase transitions, ferroelectric to anti-ferroelectric and anti-ferroelectric to relaxor ferroelectric, which can be proven by P-E hysteresis loops at different temperatures. In addition, the specimen containing 0.04/0.01 wt.% CaO/MnO showed that the coercive field E c was a minimum value of 26.7 kV/cm, while the remnant polarization P r was a maximum value of 38.7 μC/cm2, corresponding to the enhancement of piezoelectric constant d33 of 179 pC/N, electromechanical coupling factor k p of 37.3%, and relative dielectric permittivity K 33 T of 1137. (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics co-doped with CaO/MnO were considered to be a new and promising candidate for lead-free piezoelectric ceramics owing to their excellent piezoelectric/dielectric properties, which are superior to an un-doped BNBT system.  相似文献   

3.
Bismuth potassium titanate, (Bi1/2K1/2)TiO3 (BKT), ceramics were prepared by the hot-pressing (HP) method without dopant and with dopants of Bi2O3, La2O3 and MnCO3. The relative density of BKT ceramics hot-pressed at 1,060 and 1,080 °C (hereafter abbreviated to BKT-HP1060°C and BKT-HP1080°C) and x mass% Bi2O3, La2O3 and MnCO3 doped BKT ceramics hot-pressed at 1,060 °C (hereafter abbreviated as BKTBix; x?=?0.1–0.6, BKTLax; x?=?0.1–0.6 and BKTMnx; x?=?0.1–0.3) were all higher than 97%. In this study, the ferroelectric properties of BKT ceramics were successfully obtained, and the remanent polarization P r and coercive field E c of BKT-HP1080°C were 22.2 μC/cm2 and 52.5 kV/cm, respectively. A small amount of La tends to increase P r, and the P r of BKTLa0.1 was 19.2 μC/cm2. The piezoelectricities were improved to optimize poling conditions, and the electromechanical coupling factor k 33 and piezoelectric constant d 33 of BKT-HP1080°C were 0.34 and 82.8 pC/N, respectively.  相似文献   

4.
Phase structure, microstructure, piezoelectric and dielectric properties of the 0.4 wt% Ce doped 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 (Ce-BNT6BT) ceramics sintered at different temperatures have been investigated. The powder X-ray diffraction patterns showed that all of the Ce-BNT6BT ceramics exhibited a single perovskite structure with the co-existence of the rhombohedral and tetragonal phase. The morphologies of inside and outside of the bulk indicated that the different sintering temperatures did not cause the second phase on the inside of bulk. However, the TiO2 existed on the outside of the bulk due to the Bi2O3 and Na2O volatilizing at higher temperature. The ceramics sintered at 1,200 °C showed a relatively large remnant polarization (P r) of about 34.2 μC/cm2, and a coercive field (E c) of about 22.6 kV/cm at room temperature. The permittivity ? r of the ceramics increased with the increasing of sintering temperature in antiferroelectric region, the depolarization temperature (T d) increased below 1,160 °C then decreased at higher sintering temperature. The resistivity (ρ) of the Ce-BNT6BT ceramics increased linearly as the sintering temperature increased below 1,180 °C, but reduced as the sintering temperature increased further. A maximum value of the ρ was 3.125?×?1010 ohm m for the Ce-BNT6BT ceramics sintered at 1,180 °C at room temperature.  相似文献   

5.
Three primary differences between BNT- and PZT-based ceramics were analyzed from the composition and the active component of the materials. Based on the analysis the authors’ group developed the new idea of the design of the multiple complex in the A-site ions of BNT compounds. (Bi0.5Na0.5)2+, Bi3+ and Na+ in the ABO3 structure are defined as A-site, A1-site and A2-site ions, respectively, and A, A1 and A2-site ions can be simultaneously or singly substituted partially by alkaline-earth metal ions, metal ions with +3 valence and metal ions with +1 valence, respectively. Under this consideration, Several new systems of Bi0.5Na0.5TiO3 (abbreviated as BNT)-based lead-free piezoelectric ceramics were proposed. These ceramics can be prepared by conventional ceramic techniques and have excellent piezoelectric performance. Among these materials, Bi0.5(Na1−xy K x Li y )0.5TiO3 possesses higher piezoelectric constant (d 33 = 230 pC/N), higher electromechanical couple factor (k p = 0.40), larger remanent polarization (P r = 38.9 μC/cm2) and a better P-E hysteresis loop until about 200C. This work was supported by the projects of NSFC (50410179), (50572066), and (59972020), and NAMMC (2001-AA325060).  相似文献   

6.
(Na0.5Bi0.5)1?x Ba x TiO3 (x?=?0–0.12) powders were synthesized by a citrate method, and the structure and electrical properties of the resulting ceramics were investigated. A gradual change of crystal structure with the increase of BaTiO3 concentration was detected together with a significant evolution in grain size and shape. A rhombohedral-tetragonal morphotropic phase boundary (MPB) near x?=?0.06 at room temperature was ascertained for the ceramics. The dielectric constant (? r) and dissipation factor (tanδ) attain maximum values at x?=?0.08 and x?=?0.06, respectively. The specimen of x?=?0.06 provides the maximum piezoelectric constant (d 33?=?180 pC/N) and electromechanical coupling factor (k p?=?0.28), accompanied by a large remanent polarization of P r?=?37.1 μC/cm2 and a low coercive field of E c ?=?42.7 kV/cm.  相似文献   

7.
In this article, (Na0.5Bi0.5)1-xBaxTiO3 lead-free piezoelectric ceramics were prepared by solid-state reaction. The influence of Ba contents on phase structures, compositional distribution and electrical properties of (Na0.5Bi0.5)1-xBaxTiO3 ceramics were systematically investigated to further understand the nature of phase transition. It was found that the phase structure of (Na0.5Bi0.5)1-xBaxTiO3 transforms from rhombohedral to tetragonal symmetry at x = 0.06 ~ 0.07 and Ba2+ segregation forms the coexistence of Ba-rich tetragonal and Ba-deficient rhombohedral phases close to MPB. The electrical properties of prepared samples regularly changed with Ba content, which is closely related to the distribution of rhombohedral and tetragonal phases. The prepared sample near MPB exhibited the largest dielectric constant and the excellent piezoelectric properties (the maximal measuring field reached 78 kV/cm and the piezoelectric constant d 33 = 151pC/N).  相似文献   

8.
MnO2 doped (Na0.82 K0.18)0.5Bi0.5TiO3 lead-free piezoelectric ceramics were prepared by conventional solid-state reaction process and the effect of MnO2 addition on the pyroelectric, piezoelectric and dielectric properties were studied. The experiment results showed that the pyroelectric, piezoelectric, and dielectric properties strongly depended on MnO2 addition in the (Na0.82 K0.18)0.5Bi0.5TiO3 ceramics. Excellent electrical properties were obtained in (Na0.82 K0.18)0.5Bi0.5TiO3 with 0.8?mol% MnO2. The large dielectric loss of pure BNT ceramics was significantly reduced, the piezoelectric constant was improved, and it also showed excellent pyroelectric properties when compared with other lead free ceramics, with pyroelectric coefficient p?=?17?×?10?4?C/m2K and figure of merit F d ?=?6.56?×?10?5?Pa?0.5. With these outstanding pyroelectric properties, the 0.8?mol% MnO2 doped (Na0.82 K0.18)0.5Bi0.5TiO3 ceramic can be a promising material for pyroelectric sensor applications in future.  相似文献   

9.
Na0.5?K0.5NbO3 (KNN) ceramics were sintered at different temperatures (970 °C, 1000 °C, 1030 °C, 1060 °C, and 1090 °C) for 3 h by a pressureless sintering method. The powders had been synthesised by sol–gel method, using citric acid as a coordination agent and ethylene glycol as an esterifying agent. The effects of temperature on the phase, microstructure, dielectric, ferroelectric, and piezoelectric properties of the as-prepared ceramics were analysed. The results revealed that all of the ceramics had a pure perovskite phase with orthorhombic symmetry. The piezoelectric constant (d 33), the relative dielectric constant (ε r), the planar electromechanical coupling coefficient (K p), and the remnant polarization (P r) initially increased and then decreased with increasing of temperature in such KNN ceramics. The volatilization of sodium and potassium increased with increasing sintering temperature. Over the range of temperatures studied, those ceramics sintered at 1060 °C had the following optimal properties: (ρ?=?3.97 g/cm3, d 33?=?119 pC/N, ε r?=?362.46, tan δ?=?0.05, K p?=?0.23, P r?=?11.97 μC/cm2, E c?=?10.35 kV/cm, and T c?=?408 °C).  相似文献   

10.
In this paper, lead-free (1-x)(Bi0.5Na0.5)0.94Ba0.06TiO3-xBiAlO3 (BNBT-BA, x?=?0, 0.010, 0.015, 0.020, 0.025, and 0.030) piezoelectric ceramics were synthesized using a conventional solid-state reaction method. The effect of BiAlO3 concentration on dielectric, ferroelectric and piezoelectric properties were investigated. The ferroelectric and piezoelectric properties of BNBT ceramics are significantly influenced by the presence of BA. In the composition range studied, X-ray diffraction revealed a perovskite phase with the coexistence of rhombohedral and tetragonal phases. The temperature dependence of dielectric properties showed that the depolarization temperature (T d) shifted towards lower temperatures and that the degree of diffuseness of the phase transition around T d and T m became more obvious with increasing BiAlO3 content. The remanent polarization increased with increasing BA, and reached a maximum value of 30 μC/cm2 at x?=?0.020. As a result, at x?=?0.020, the piezoelectric constant (d 33) and the electromechanical coupling factor (k p) of the ceramics attained maximum values of 188 pC/N and 34.4 %, respectively. These results indicate that BNBT-BA ceramics is a promising candidate for lead-free piezoelectric materials.  相似文献   

11.
(1-x) (Na0.5Bi0.5TiO3)-xK0.5Na0.5NbO3/NBT-xKNN [x?=?0.07, 0.06, 0.05] ferroelectric ceramics were prepared by solid state synthesis route (SSSR). The effects of KNN contents on the microstructure, dielectric, piezoelectric and ferroelectric properties of the NBT-xKNN system were investigated in detail. For single perovskite phase formation, the calcination temperature was optimized at 800 °C for 6 h. From the XRD study, the morphotropic phase boundary (MPB) was confirmed for x?=?0.07 composition. For better densification, the sintering temperature was optimized for 1150 °C for 4 h. SEM micrographs illustrate the closely packed and non-uniform distribution of grains. Diffusive type of behaviour was observed in all the ceramics. Polarization (P) vs. electric field (E) study confirmed the ferroelectric nature of the NBT-xKNN ceramics. The bipolar field-induced strain measurement for all the ceramic samples showed butterfly-shaped loops indicating their piezoelectric nature. Among all the different compositions in MPB region, high dielectric constant (εr) of?~?3011, high remnant polarization (P r ) of 17.88μC/cm2 and high strain % of 0.41, were obtained in NBT-xKNN system with x?=?0.07 confirming the existence of MPB at this composition.  相似文献   

12.
Lead-free perovskite (0.995–x)(K0.5Na0.5)NbO3x(Bi0.5Li0.5)ZrO3–0.005BiAlO3 ternary piezoelectric ceramics were projected and prepared by a conventional solid-state method. A research was conducted on the effects of (Bi0.5Li0.5)ZrO3 content on the structure and piezoelectric properties of the ceramics. By combining the X-ray diffraction patterns with the temperature dependence of dielectric properties, a rhombohedral–orthorhombic–tetragonal phase coexistence was identified for the ceramics with 0.02 ≤ x ≤ 0.025, and a rhombohedral–tetragonal phase boundary was determined in the composition x = 0.03. Upon further increasing the (Bi0.5Li0.5)ZrO3 content, the rhombohedral–tetragonal phase boundary transformed to a single rhombohedral structure with x ≥ 0.035. An obviously improved piezoelectric activity was obtained for the ceramics with compositions in and around the rhombohedral–tetragonal phase boundary, among which the composition x = 0.025 exhibited the maximum values of piezoelectric constant d 33, and planar and thickness electromechanical coupling coefficients (k p and k t), of 252 pC/N, 0.366, and 0.466, respectively. In addition, the ceramic with x = 0.025 was found to possess a relatively high Curie temperature of 368 °C, suggesting it may have a prospect for applications at elevated ambient temperatures.  相似文献   

13.
As a candidate for lead-free piezoelectric materials, Li2O excess 0.95(Na0.5K0.5)NbO3–0.05LiTaO3 (NKN-5LT) ceramics were developed by conventional sintering process. Sintering temperature was lowered by adding Li2O as a sintering aid. Abnormal grain growth in NKN-5LT ceramics was observed with varying Li2O content. In the 1 mol% Li2O excess NKN-5LT samples sintered at 1000°C for 4 h in air, electromechanical coupling factor and piezoelectric constant of NKN-5LT ceramics were found to reach the highest values of 0.37 and 250 pC/N, respectively. Lead-free piezoelectric ceramic, Li2O excess NKN-5LT, multilayer ceramic actuators (MLCA) were fabricated. 10?×?10?×?1 mm3 size MLCAs were fabricated by conventional tape casting method. The displacement of Li2O excess NKN-5LT MLCA with 3 mm thickness was ~1 μm at 150 V.  相似文献   

14.
Niobate ceramics such as NaNbO3 and KNbO3 have been studied as promising Pb-free piezoelectric ceramics, but their sintering densification is fairly difficult. In the present study, highly dense Na0.5K0.5NbO3 ceramics with submicron grains were prepared using SPS, whose density was raised to 4.47 g/cm3 (>99% of the theoretical density) at 920 °C. Reasonably good ferroelectric and piezoelectric properties were obtained in the SPSed Na0.5K0.5NbO3 ceramics after annealing in air. The effect of annealing time on the electrical properties was investigated to determine optimal processing condition. The piezoelectric parameter (d 33) of the Na0.5K0.5NbO3 ceramics annealed properly reached 148 pC/N.  相似文献   

15.
We studied the effect of Bi4Ti3O12 (BiT) platelet addition in Bi0.5(Na0.75K0.25)0.5TiO3 (BNKT) ceramics by preparing two kinds of BNKT ceramics. One type of BNKT ceramic was fabricated by a conventional solid state reaction method (normal sample), while the other by addition of 15 wt% BiT platelets to BNKT powders (BiT-added sample). In the case of BiT-added BNKT ceramics, plate like grains were formed by the reaction of BiT platelets with Na2CO3, K2CO3, and TiO2 during the sintering process. The grain size of BiT-added BNKT ceramics was 10 times larger than that of normal BNKT ceramic. The piezoelectric strain and d33 values of BiT-added BNKT ceramics were 0.135% and 225 pm/V, respectively. These values were 35% higher than those of normal BNKT ceramics. The piezoelectric properties of BiT-added BNKT ceramics were enhanced by the higher domain activity due to a decrease in domain density at larger grain sizes.  相似文献   

16.
Abstract

Ba0.95Ca0.05Ti1-xZrxO3 (BCTZO) ceramics were prepared by a solid state reaction method. The samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and X-ray absorption near edge structure (XANES). The ceramics exhibit a pure perovskite structure. The average grain size gradually decreases with increasing Zr concentration. XANES results indicate that the intensities of pre-edge peaks dropped with increasing Zr concentration. The BCTZO ceramic of x?=?0.05 has the optimum electrical properties with the maximum dielectric constant (ε'm), remanent polarization (2Pr), coercive electric field (2Ec) and piezoelectric charge constant (d33) of 7,244, 12.54 (μC/cm2), 5.29 (kV/cm) and 288 (pC/N), respectively.  相似文献   

17.
Relaxor ferroelectric compositions of 0.2Pb(Mg1/3Nb2/3)O3–0.5Pb(Zr0.48Ti0.52)O3–0.3Pb(Fe1/3Nb2/3)O3 (0.2PMN–0.5PZT–0.3PFN) ceramics were doped with different concentrations of Li2CO3 and were prepared by a columbite precursor process. Their structural, dielectric and pyroelectric properties were studied. A phase analysis was performed using the X-ray diffraction patterns from 2θ?=?44° to 46°, over which the tetragonal phase displays two peaks, (002)T and (200)T, while the rhombohedral phase displays one peak, (200)R. A well saturated P–E hysteresis loop was obtained for the 0.2PMN–0.5PZT–0.3PFN ceramic doped with 0.2 wt.% Li2CO3, and the values for the remnant polarization (P r) and coercive field (E c) were 30 μC/cm2 and 5.4 kV/cm, respectively. A maximum value of the pyroelectric coefficient, 518 μC/m2K, was obtained for the 0.2PMN–0.5PZT–0.3PFN ceramic doped with 0.3 wt.% Li2CO3 at the maximum temperature (T max) due to the decrease of the binding energy for the polarization charge which in formed at the surface.  相似文献   

18.
Lead-free piezoelectric ceramics are strongly needed to replace the lead-based piezoelectric ceramics with increasing environmental concerns. Barium titanate (BaTiO3) systems are one of the most promising candidates due to excellent electrical properties. However, the sintering temperature for traditionally sintered BaTiO3 ceramics are about 1300°C, which restricts the applications of BaTiO3 ceramics. It is necessary to develop high piezoelectric properties of BaTiO3 based ceramics which are able to sinter at low temperature. The (Ba0.94Cax)Ti0.94Oδ-0.04LiF (x?=?0.00?~?0.05 mol) ceramics were synthesized by a conventional sintering method at 1050°C. All the samples show high relative densities over 90%. X-Ray Diffraction pattern indicated that the crystallographic structure of the samples (x?=?0.00 and 0.01 mol) are orthorhombic phase and changes to pseudocubic one with increasing Ca content to x?=?0.03 mol. Two-phases with orthorhombic and pseudocubic symmetries coexisted at x?=?0.02 mol, which contributes the excellent properties, in which the piezoelectric constant d 33?=?361 pC/N, the planar electromechanical coupling coefficient kp?=?41.2%, the Curie temperature Tc?=?70°C, the temperature of phase transition T O-PC?=?34°C near the room temperature, the relative permittivity ε r?=?4028 and the remanent polarization P r?=?9.39 μC/cm2.  相似文献   

19.
In this paper, measurements of the nonlinear ferroelectric, piezoelectric and dielectric properties of Pb9Ce2Ti12O36 (Pb9CTO) and Ba2NdTi2Nb3O15 (BNTN) ferroelectric ceramics are presented. Hysteresis P(E) loops were measured as a function of applied electric field, frequency and temperature. The coercive field (E c) and remnant polarization (P r) displayed temperature and frequency dependence. Lead-free BNTN ceramics exhibited a coercive field E c?>?2.4 kV mm?1 and a piezoelectric coefficient d 33?=?2 pC N?1. The hysteresis loop was pinched above 110°C and a linear response was observed at 155°C, typical of a paraelectric material. Pb9CTO was shown to be ferroelectric with coercive field E c?=?1.2 kV mm?1 and a d 33?=?65 pC N?1. The frequency dependences of the impedance of the Pb9CTO discs were analyzed.  相似文献   

20.
Bismith sodium titanate (BNT)-based powders were prepared by conventionally mixed-oxide method using Bi2O3, Na2CO3 and TiO2. The La2O3 was added as the modifier to the BNT composition for easily poling and reducing an abnormal dielectric loss at high temperatures. In this study, the investigated compositions were Bi0.5Na0.5TiO3 and Bi0.5Na0.485La0.005TiO3. The powders were calcined at 900 °C for 2 h by slow heating rate at 100 °C/h. The calcined BNT-based powders were then attrition-milled for 3 h with a high speed at 350 rpm. After drying, the fine powders were uniaxially pressed and then cold-isostatically pressed (CIP) at 240 MPa for 10 min. All pressed pellets were sintered at 1000–1100 °C for 2 h in air atmosphere. The microstructure of sintered pellets was investigated by SEM. Results of dielectric and piezoelectric property measurement were also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号