首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nanostructured metals and alloys possess very high strength but exhibit limited plasticity. Enhancement of the strength/ductility balance is of prime importance to achieve wide industrial applications. However, post-deformation heat treatment, which is usually used to improve plasticity, can lead to a decrease in other properties. In the case of austenitic stainless steels, heat treatment in the range from 480 to 815 °C can increase their susceptibility to intergranular corrosion. The aim of the work reported in this paper was to determine if nanostructured austenitic stainless steel is susceptible to intergranular corrosion if heat treated for 1 h at 700 °C. Samples of 316LVM austenitic stainless steel were hydrostatically extruded, in a multi-step process with the total true strain of 1.84 to produce a uniform microstructure consisting of nanotwins. These nanotwins averaged 21 nm in width and 197 nm in length. Subsequent annealing at 700 °C produced a recrystallised structure of 68-nm-diameter nanograins. The heat treatment improved the ductility from 7.8 to 9.2 % while maintaining the ultimate tensile strength at the high level of 1485 MPa. Corrosion tests were performed in an aqueous solution consisting of 450 ml concentrated HNO3 and 9 g NaF/dm3 (according to ASTM A262-77a). The evaluation of the corrosion resistance was based on transmission and scanning electron microscopic observation of the microstructure and chemical analyses. The results revealed that both the as-received and HE-processed samples are slightly susceptible to the intergranular corrosion after annealing at 700 °C for 1 h.  相似文献   

2.
3.
4.
5.
In this work,coarse-grained 316 L stainless steels were cold rolled with a thickness reduction of^83%(CR 83%).After annealing,the behaviors of the nanostructured stainless steel samples were systematically investigated in the temperatures range of 200C–650C.It was found that with increasing annealing temperature the volume fraction of theα0-martensite first increased to reach a maximum value at 400C,then the volume fraction decreased with further increases of the annealing temperature.The yield strength was increased from 1400 MPa to 1720 MPa after annealing;this strong hardening effect in cold rolled 316 L stainless steel was mainly attributed to the increase of the volume fraction ofα0-martensite.  相似文献   

6.
Abstract

The plastic deformation behaviour of two different batches (having differences in chemical composition) of 316L austenitic stainless steel has been explored in the 200-800°C temperature range as a function of grain size. The plastic behaviour is correlated with microstructural observations of annealed and deformed samples. The microstructural parameters measured in this study are grain size, grain size and shape distribution, grain aspect ratio, and the distribution of dihedral angles. Hardness measurements were also performed to assess the hardness profile across the grains. The applicability of Hall-Petch relationship was tested in the 200-800°C temperature range. It is observed that the Hall-Petch relationship is applicable in the coarse grain regime (d≥6 μm) and Kocks composite relationship (σ versus d-1) in the fine grain regime (d≤6 μm) of batch 1 samples in the 200-600°C temperature range. At 800°C, the Hall-Petch data is widely scattered and the scatter increases with increasing strain. The variation of Hall-Petch parameters and Kocks parameters with strain and temperature are analysed on the basis of changes in the microstructural parameters. The operating deformation mechanisms in different temperature and strain ranges are discussed on the basis of variation of microstructural parameters with strain and temperature.  相似文献   

7.
In this work, plasma nitriding and plasma nitriding-oxidizing treatment have been performed on AISI 316 austenitic stainless steel. In order to evaluate its response to this treatment, their microstructures and wear resistance have been compared with conventional plasma nitrided. The treatment of plasma nitriding was performed at temperature of 450 °C for 5 h with gas mixture of N2/H2:1/3 whereas plasma nitriding-oxidizing was performed with the same parameters of plasma nitriding and temperature of 450 °C with gas mixture of O2/H2:1/5 for 15, 30 and 60 min. The structural, mechanical and tribological properties were analyzed using XRD, SEM, microhardness testing and pin-on-disk tribotesting. The results showed that oxidation treatment reduces wear resistance of plasma nitrided sample under high loads. Furthermore the tribological evaluation indicates that by increasing the oxidation time further reduction of wear resistance can be occurred. In addition, it was found that oxidation treatment after plasma nitriding provides an important improvement in the friction coefficient against a AISI 52100 steel pin and reduces surface roughness.  相似文献   

8.
Swelling of 316L austenitic stainless steel plasma nitrided at 400°C under floating potential has been investigated using electron back scattered diffraction and white-light interferometry. Swelling of individual grains strongly depends on their crystallographic orientation, similarly to the thickness of the nitrided layer. After 1 h of treatment, swelling is maximum for the 〈001〉 oriented grains and minimum for the 〈111〉 oriented grains. After 8 and 33 h of nitriding, the maximum of swelling is observed in the grains having their normal direction at about 15° from the 〈001〉 orientation. These results are discussed on the basis of plastic strain after comparison with calculated swellings of the 〈001〉 and 〈111〉 oriented grains, using the thickness of the nitrided layer deduced from the trapping–detrapping diffusion model and a rough estimation of the plastic strain. The satisfactory agreement between experimental and calculated swellings supports the idea that swelling results from the lattice expansion due to the incorporation of nitrogen plus an elastic strain and a plastic strain. For individual grains of the 316L matrix, nitriding leads to a tensile-like elongation of high magnitude (around 20%) and it might be the origin of the lattice rotations which were previously observed after nitriding.  相似文献   

9.
Mechanics of Time-Dependent Materials - Creep deformation and rupture behavior of nitrogen-alloyed (0.14 wt.%) nuclear grade 316LN austenitic stainless steel were investigated for the varying...  相似文献   

10.
ABSTRACT

The influence of low-temperature gaseous carburisation on notch fatigue behaviour of 316L steel under cyclic axial loading was investigated. After carburisation, the carburised case was well distributed at the surface region and was not influenced by the notch geometry. Low-temperature carburisation considerably enhanced the notch fatigue performance, which led to 32% and 44% increase in the endurance limits for the specimens with stress concentration factors K t?=?1.91 and 3.91, respectively. The notch sensitivity of 316L steel reduced after carburisation. Irrespective of the applied stress amplitude, the fatigue crack nucleation sites were always at the notch root surface for the untreated specimens. For the carburised specimens, fatigue cracks nucleation changed from surface at high-level stress to subsurface at low-level stress.  相似文献   

11.
In this research, the microstructure, tribological and corrosion properties of plasma nitrided-oxidized AISI 316 austenitic stainless steel at high oxidation temperature were studied and compared with conventional plasma nitride. The structural, tribological and corrosion properties were analyzed using XRD, SEM, microhardness testing, pin-on-disk tribotesting and electrochemical polarization. Plasma nitriding was conducted for 5 h at 450 °C with gas mixture of N2/H2 = 1/3 to produce the S-phase. The nitrided samples were post-oxidized at 500 °C with gas mixture of O2/H2 = 1/5 for 15, 30 and 60 min. X-ray diffraction confirmed the development of CrN, ? and γ′ nitride phases and magnetite (Fe3O4) oxide phase under plasma nitriding-oxidizing process. In addition, it was found that oxidation treatment after plasma nitriding provides an important improvement in the friction coefficient and the corrosion resistance. The optimized wear and corrosion resistance of post-oxidized samples were obtained after 15 min of oxidation.  相似文献   

12.
ABSTRACT

The effect of pre-strain on tensile behaviour of 316L austenitic stainless steel was investigated, focusing on strain rate sensitivity, temperature sensitivity and strain hardening. Experimental data showed that strain rate sensitivity, temperature sensitivity and strain hardening were weakening with pre-strain. Meanwhile, the variation of microstructure with pre-strain was observed by optical microscopy, scanning electronic microscopy and X-ray diffraction. Then, the mechanical properties of pre-strained material were correlated with the increase in dislocation density and mechanical twinning with pre-strain. Finally, an improved Arrhenius-PS model considering the effect of pre-strain was developed.

This paper is part of a thematic issue on Nuclear Materials.  相似文献   

13.
Role of cold rolling texture on the tensile properties of the cold rolled and cold rolled and annealed AISI 316L austenitic stainless steel is described here. The solution-annealed stainless steel plates were unidirectionally cold rolled to 50, 70 and 90% of reduction in thickness. The cold rolled material was annealed at 500–900 °C annealing temperatures. X-ray diffraction technique was employed to study the texture evolution in cold rolled as well as cold rolled and annealed conditions. The texture components that evolved were translated into slip transmission number ‘λ’ and Schmid factor ‘μ’. These two parameters were correlated with the tensile properties of the material. The tensile properties were evaluated under all processing conditions. Softening of the cold rolled material was observed after annealing with increasing annealing temperatures. From the stress–strain curves, strain hardening coefficient ‘n’ and strain hardening rate ‘θ’ were determined. It was found that the effect of texture on tensile behaviour could be understood clearly by strain hardening rate. Out of the two parameters, ‘n’ and ‘θ’, strain hardening rate was found to be more sensitive to type of texture in the material.  相似文献   

14.
通过定量金相,SEM&EDS、TEM等实验技术分析316L奥氏体不锈钢中析出相随时效时间、温度的变化,并测定析出相的体积分数与尺寸.结合热力学计算表明:在316L奥氏体不锈钢中,经850℃时效处理后,析出相为M23C6型碳化物,且随着时效时间的延长,析出量明显增多,尺寸增大;经650℃时效处理100 h后,主要析出相类型为χ相.  相似文献   

15.
In this study we implemented two rolling modes to investigate the strain path effect on deformation and annealing textures of austenitic stainless steel 316L. We applied unidirectional rolling and cross-rolling to achieve up to a 90% reduction in thickness. Results show that for deformed austenite, Brass, Goss and γ-fibre were the main texture components in the unidirectional rolled sample, while Brass was the dominant texture in the cross-rolled sample. In addition, rotated Copper and rotated Cube were the main textures of martensite after 90% reduction for unidirectional rolled and cross-rolled samples, respectively. Results also show that recrystallization texture has a direct correlation to that of deformed austenite since transformed martensite reversion was athermal. After recrystallization, Brass and a combination of Brass and Goss were the dominant textures for cross-rolled and unidirectional rolled samples, respectively.  相似文献   

16.
Abstract

The room temperature plastic deformation behaviour of two different batches (with differences in chemical composition) of 316L austenitic stainless steel has been studied. By thermomechanical treatments, a wide range of grain sizes varying from 2·7 to 64·0 νm was obtained in this study. The different microstructural parameters, such as grain size, distribution of grain size and shape, dihedral angle distribution, and grain aspect ratio were measured for annealed and deformed specimens of the two batches. The Hall–Petch behaviour of batch 1 showed two distinctly different linear regions, one in the fine grain size range (d≤6νm) and the other in the coarse grain size range (d6νm). The Hall–Petch parameter K H (?) was significantly higher in the fine grain regime than coarse grain regime at all strains. Hardness measurements were also performed across the grain at different strain levels. The applicability of the Hall–Petch relationship was assessed in batch 1 and batch 2. It was observed that the Hall–Petch relationship was applicable in the coarse grain regime and Kocks composite relationship in the fine grain regime of batch 1. In batch 2 of 316L austenitic stainless steel, a single linear Hall–Petch relationship could describe the deformation behaviour over the entire range of grain size (from 2.9 to 46 νm) studied. The variation of the Hall–Petch and Kocks composite parameters with strain was discussed in terms of changes in the microstructural parameters.  相似文献   

17.
The purpose of this study was to characterize the precipitation behaviour of AISI type 316 steel in hydrogen. The different precipitates (M23C6, M6C), the intermetallicχ-phase and the martensitic phase (α′,ε) were determined by using transmission electron microscopy (TEM) and X-ray diffraction techniques. All the specimens were sensitized at 650? C for 24 h. Some samples were carburized up to 2 wt% C. Additions of carbon content decrease the time required for sensitization. Short-term (24 h) exposure of this steel to sensitization temperature results in a complex precipitation reaction of various carbides and intermetallic phases. Hydrogen was introduced by severe cathodic charging at room temperature. This study indicates that by conventional X-ray techniques it is possible to detect those precipitates and their behaviour in a hydrogen environment. The zero shift as observed by X-ray diffraction from the carbides (M23C6, M6C) and the intermetallicχ-phase, indicates that those phases absorb far less hydrogen than the austenitic matrix. TEM studies reveal that hydrogen inducesα′ martensite at chromium-depleted grain-boundary zones, near the formation of the carbides.  相似文献   

18.
An experimental study addressing the effect of tensile deformation on recrystallized grain size has been undertaken to explore the conditions leading to abnormal grain growth in Type 316H austenitic stainless steel. Following a solution heat treatment, a Type 316H stainless steel has been subjected to various tensile deformations up to a maximum of approximately 50% strain and then heated at a temperature of 1150 °C for 0.5 h followed by furnace cooling. A fraction of abnormally large grains is observed following a prior strain of approximately 20%. The results are presented, in terms of standard statistical analysis, and also graphically. The graphical presentation provides a clear, visual appreciation of uni- and bi-modal distributions, which may be of general help in other analyses of this nature.  相似文献   

19.
A nanotwinned 316 L austenitic stainless steel was prepared by means of surface mechanical grinding treatment.After recovery annealing,the density of dislocations decreases obviously while the average twin/matrix lamella thickness still keeps in the nanometer scale.The annealed nanotwinned sample exhibits a high tensile yield strength of 771 MPa and a considerate uniform elongation of 8%.TEM observations showed that accommodating more dislocations and secondary twinning inside the nanotwins contribute to the enhanced ductility and work hardening rate of the annealed nanotwinned sample.  相似文献   

20.
Low temperature carburising (LTC) is a thermochemical treatment designed so as to achieve a good combination of wear and corrosion resistance in stainless and duplex steels. In this work, the influence of LTC on both corrosion and dry sliding behaviour of AISI 316L was investigated. LTC significantly enhanced surface hardness, due to the formation of the carbon-supersaturated S-phase. Consequently, the wear behaviour (evaluated against different countermaterials) improved, due to increased resistance to plastic deformation, as well as to decreased tendency towards adhesion. In order to evaluate the corrosion behaviour, electrochemical measurements were performed both in conventional environments and in reference conditions for the food industry. The results showed a significantly improved corrosion resistance in chloride environments, where the formation of a C-rich surface layer ennobles the treated steel, even though pitting corrosion was observed at very high anodic potentials. Conversely, the treated steel showed comparable (in acetic acid) or worse (in a sanitising solution) behaviour than the untreated one. In sulphuric acid the treated steel did not passivate, but it corroded at a limiting current density much lower that the critical current density for AISI 316L passivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号