首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Song MS  Jung JH  Kim Y  Wang Y  Zou J  Joyce HJ  Gao Q  Tan HH  Jagadish C 《Nanotechnology》2008,19(12):125602
The growth of epitaxial Ge nanowires is investigated on (100), (111) B and (110) GaAs substrates in the growth temperature range from 300 to 380?°C. Unlike epitaxial Ge nanowires on Ge or Si substrates, Ge nanowires on GaAs substrates grow predominantly along the [Formula: see text] direction. Using this unique property, vertical [Formula: see text] Ge nanowires epitaxially grown on GaAs(110) surface are realized. In addition, these Ge nanowires exhibit minimal tapering and uniform diameters, regardless of growth temperatures, which is an advantageous property for device applications. Ge nanowires growing along the [Formula: see text] directions are particularly attractive candidates for forming nanobridge devices on conventional (100) surfaces.  相似文献   

2.
Kim HS  Hwang SO  Myung Y  Park J  Bae SY  Ahn JP 《Nano letters》2008,8(2):551-557
Electron tomography and high-resolution transmission electron microscopy were used to characterize the unique three-dimensional structures of helical or zigzagged GaN, ZnGa2O4, and Zn2SnO4 nanowires. The GaN nanowires adopt a helical structure that consists of six equivalent <011> growth directions with the axial [0001] direction. We also confirmed that the ZnGa2O4 nanosprings have four equivalent <011> growth directions with the [001] axial direction. The zigzagged Zn2SnO4 nanowires consisted of linked rhombohedrons having the side edges matched to the <110> direction and the [111] axial direction.  相似文献   

3.
Tensile tests were performed on iron nanopillars oriented along [001] and [110] directions at a constant temperature of 300 K through molecular dynamics simulations with an embedded-atom interatomic potential for iron.The nanopillars were stretched until yielding to investigate the onset of their plastic deformation behaviors.Yielding was found to occur through two different mechanisms for [001] and [110] tensions.In the former case,plastic deformation is initiated by dislocation nucleation at the edges of the nanopillar,whereas in the latter case by phase transformation inside the nanopillar.The details during the onset of plastic deformation under the two different orientations were analyzed.The varying mechanisms during plastic deformation initiation are bound to influence the mechanical behavior of such nanoscale materials,especially those strongly textured.  相似文献   

4.
We have determined the in-plane orientation of GaN nanowires relative to the Si (111) substrate on which they were grown. We used x-ray diffraction pole figure measurements to evidence two types of crystallographic orientation, all the nanowires having [Formula: see text] lateral facets. The proportion of these two orientations was determined and shown to be influenced by the pre-deposition of Al(Ga)N intermediate layers. In the main orientation, the GaN basal [Formula: see text] directions are aligned with the [Formula: see text] directions. This orientation corresponds to an in-plane coincidence of GaN and Si lattices.  相似文献   

5.
The electronic properties of hydrogen-saturated GaN nanowires with different orientations and sizes are investigated using first principles calculations, and three types of nanowires oriented along the [0 0 1], [1 1 0] and [1 −1 0] crystal directions are considered. The electronic properties of nanowires in all three directions are extremely similar. All the hydrogen-saturated GaN nanowires show semiconducting behavior with a direct band gap larger than that of bulk wurtzite GaN. Quantum confinement leads to a decrease in the band gap of the nanowires with increasing nanowire size. The [0 0 1]-oriented nanowires with hexagonal cross sections are energetically more favorable than the [1 0 0]- and [1 −1 0]-oriented nanowires with triangular cross sections.  相似文献   

6.
PX-phase PbTiO3 (PT) nanowires were synthesized by microwave-hydrothermal process, and their microstructures were characterized by electron microscopy. The PX-phase PT nanowires exhibit acicular morphology with diameter sizes of 20-80 nm and length over 1 µm. They tend to grow into a regular structure with parallel arrangement along their long axis in the [001] direction. Selected area electron diffraction patterns demonstrate the PX-phase PT nanowires with a 3-fold modulated periodicity along the [110] direction and a 4-fold modulated periodicity in the [001] direction. These results were also confirmed by the high-resolution transmission electron microscopy images.  相似文献   

7.
Understanding the macroscopic physical and mechanical properties of poly(p-phenylene terephthalamide) (PpTA) fibres as a function of temperature requires an understanding of how temperature influences its microscopic structure. This study investigates lattice distortions in single PpTA fibres using the high brilliance of a synchrotron radiation microbeam. Lattice distortions are studied over a temperature range of 110–350 K and the influence of tensile deformation is also considered. The results reveal linear thermal expansion behaviour for all unit cell axes, in general agreement with literature. Expansion/contraction is greatest along the [100] direction whilst being reduced along [010] by inter-chain hydrogen bonding. During macroscopic deformation, longitudinal crystal strain dominates with respect to axial lattice distortions induced by temperature changes. There is only a small change in the [100] coefficient of thermal expansion, with the [010] and [001] directions being largely unaffected.  相似文献   

8.
Single-crystalline, one-dimensional semiconductor nanostructures are considered to be one of the critical building blocks for nanoscale optoelectronics. Elucidation of the vapour-liquid-solid growth mechanism has already enabled precise control over nanowire position and size, yet to date, no reports have demonstrated the ability to choose from different crystallographic growth directions of a nanowire array. Control over the nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and bandgap may be used to tune the physical properties of nanowires made from a given material. Here we demonstrate the use of metal-organic chemical vapour deposition (MOCVD) and appropriate substrate selection to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties. Epitaxial growth of wurtzite gallium nitride on (100) gamma-LiAlO(2) and (111) MgO single-crystal substrates resulted in the selective growth of nanowires in the orthogonal [1\[Evec]0] and [001] directions, exhibiting triangular and hexagonal cross-sections and drastically different optical emission. The MOCVD process is entirely compatible with the current GaN thin-film technology, which would lead to easy scale-up and device integration.  相似文献   

9.
We characterized the elastic properties of GaN nanowires grown along different crystallographic orientations. In situ transmission electron microscopy tensile tests were conducted using a MEMS-based nanoscale testing system. Complementary atomistic simulations were performed using density functional theory and molecular dynamics. Our work establishes that elasticity size dependence is limited to nanowires with diameters smaller than 20 nm. For larger diameters, the elastic modulus converges to the bulk values of 300 GPa for c-axis and 267 GPa for a- and m-axis.  相似文献   

10.
Hexagonal gallium nitride nanowires were synthesized successfully by solvothermal method with alginate as template. The microstructure, morphologies and compositions of the as-prepared product were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), high resolution transmission electron microscopy (HRTEM), and energy dispersive X-ray (EDX). Results suggested that the rod-like nanowires were hexagonal single-crystalline GaN growing along [001] direction. The photoluminescence spectra (PL) of the GaN revealed that the as-synthesized sample possesses excellent optical properties.  相似文献   

11.
The potential of AIGaN/GaN heterostructures integrated with zinc oxide (ZnO) nanowires for gas sensing applications is demonstrated. Single crystal ZnO nanowires, serving as sensing probes, were selectively grown between two ohmic electrodes of AIGaN/GaN two dimensional electron gas heterostructures by thermal oxidation of sputtered zinc films in air. Electron diffraction and transmission electron microscopy showed the ZnO-nanowires to be crystalline structures oriented in the [001] direction. The fabricated structures were used to detect ethanol, acetone and methanol in a nitrogen background. The results indicate that the hybrid AIGaN/GaN-ZnO nanowires gas sensors are operable over a broad range of temperatures and could potentially be integrated with devices for wireless environmental monitoring.  相似文献   

12.
Highly ordered circular patterns of copper nanowire arrays were successfully deposited into designed anodic aluminum oxide templates. High-resolution transmission electron microscopy was used to study the microstructure of these Cu nanostructures. The results showed that the growth orientation of the copper nanowires was along [220] direction, and the broken orientation were along [2?02?] and [02?2] directions, respectively. Regular cones were formed at the broken end of nanowires. Bent nanowires were also observed, this means that the copper nanowires have good mechanical properties when applied external force. Chemical analysis has been performed on Cu nanowires using electron energy-loss spectroscopy.  相似文献   

13.
Mg-doped GaN nanowires have been successfully synthesised on Si(1?1?1) substrates by magnetron sputtering through ammoniating Ga2O3/Au thin films, and the effect of ammoniating time on microstructure and morphology were analysed in detail. X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy and photoluminescence spectrum were carried out to characterise the microstructure, morphology and optical properties of the GaN samples. The results demonstrate that the nanowires after ammonification at 900°C for 15?min are single crystal GaN with a hexagonal wurtzite structure and high crystalline quality, having the size of 50–80?nm in diameter, more than 10 microns in length and good emission properties. The growth direction of this nanowire is parallel to [0?0?1] direction of hexagonal unit cell. Ammoniating time has a great impact on the microstructure, morphology and optical properties of the GaN nanowires.  相似文献   

14.
The orientation dependence of creep rupture lives of a single crystal superalloy at 760℃/760 MPa was investigated.The orientations of the specimens tested were about 30°away from [001].The results showed that specimens with orientations on the [001]-[011] boundary had the longest rupture life.The deformation of these specimen were controlled by a/2110 slip and a few stacking faults with two orientations were observed.On the other hand,specimens with orientations near the [001]-[011] boundary or on the [001]-[111] boundary showed short rupture lives,and stacking faults with single orientation were observed in these specimens.The rupture properties and the deformation mechanisms were discussed based on the dislocation pattern and the calculated Schmid factors for different specimens.  相似文献   

15.
We have performed a massive statistical analysis on the breaking behaviour of Ni nanowires using molecular dynamic simulations. Three stretching directions, five initial nanowire sizes and two temperatures have been studied. We have constructed minimum cross-section histograms and analysed for the first time the role played by monomers and dimers. The shape of such histograms and the absolute number of monomers and dimers strongly depend on the stretching direction and the initial size of the nanowire. In particular, the statistical behaviour of the breakage final stages of narrow nanowires strongly differs from the behaviour obtained for large nanowires. We have analysed the structure around monomers and dimers. Their most probable local configurations differ from those usually appearing in static electron transport calculations. Their non-local environments show disordered regions along the nanowire if the stretching direction is [100] or [110]. Additionally, we have found that, at room temperature, [100] and [110] stretching directions favour the appearance of non-crystalline staggered pentagonal structures. These pentagonal Ni nanowires are reported in this work for the first time. This set of results suggests that experimental Ni conducting histograms could show a strong dependence on the orientation and temperature.  相似文献   

16.
Molecular Dynamics (MD) simulations have been performed using the EAM potential to investigate the deformation behaviors and mechanical properties of <100>/{100} gold nanowires with square cross-section at a certain strain rate under different temperatures ranging from 10 K to 700 K. It is found that <100>/{100} gold nanowires at high temperatures tend to form the extended stable nanobridges-Helical Multi-shell Structure (HMS), which is similar to the deformation behavior of <110> gold nanowires at room temperature reported in the previous experimental observations and simulations. The effect of temperature on the mechanical properties and deformation behaviors of gold nanowires was analyzed. The results showed that the yield stress and modulus of the nanowires with rectangular cross-section decrease with increasing temperature at certain strain rate. In addition, we investigated <100>/{110} and <110> gold nanowires under the same conditions, and found that the surface orientation plays a significant role in the formation and stability of gold nanobridges. Based on these investigations, we discussed the combined effects of surface orientation and temperature on the mechanical properties and structural behaviors. Moreover, the length of HMS and toughness of nanowires with different orientations was analyzed as a function of temperature.  相似文献   

17.
Hard tungsten carbide (WC) with brittle behavior is frequently applied for mechanical purposes. Here, ultralarge elastic bending deformation is reported in defect‐rare WC [0001] nanowires; the tested bending strain reaches a maximum of 20% ± 3.33%, which challenges the traditional understanding of this material. The lattice analysis indicates that the dislocations are confined to the inner part of the WC nanowires. First, the high Peierls–Nabarro barrier hinders the movement of the locally formed dislocations, which causes rapid dislocation aggregation and hinders long‐range glide, resulting in a dense distribution of the dislocation network. In this case, the loading is dispersed along multiple points, which is then balanced by the complex internal mechanical field. In the compressive part, the possible dislocations predominantly emerge in the (0001) plane and mainly slip along the axial direction. The disordered shell first forms at the tensile side and prevents the generation of nanocracks at the surface. The novel lattice kinetics make WC nanowires capable of substantial bending strain resistance. Analytical results of the force–displacement (F–d) curves based on the double‐clamped beam model exhibit an obvious nonlinear elastic characteristic, which originates fundamentally from the lattice anharmonicity under moderate stress.  相似文献   

18.
Peng H  Xie C  Schoen DT  Cui Y 《Nano letters》2008,8(5):1511-1516
Layer-structured indium selenide (In 2Se 3) nanowires (NWs) have large anisotropy in both shape and bonding. In 2Se 3 NWs show two types of growth directions: [11-20] along the layers and [0001] perpendicular to the layers. We have developed a powerful technique combining high-resolution transmission electron microscopy (HRTEM) investigation with single NW electrical transport measurement, which allows us to correlate directly the electrical properties and structure of the same individual NWs. The NW devices were made directly on a 50 nm thick SiN x membrane TEM window for electrical measurements and HRTEM study. NWs with the [11-20] growth direction exhibit metallic behavior while the NWs grown along the [0001] direction show n-type semiconductive behavior. Excitingly, the conductivity anisotropy reaches 10 (3)-10 (6) at room temperature, which is 1-3 orders magnitude higher than the bulk ratio.  相似文献   

19.
Thin films of polyvinylchloride (PVC) have been grown epitaxially from three different solvents onto the (001) plane of rocksalt crystals by the isothermal immersion technique. The ranges of values of the growth parameters (temperature and concentration of the solution and immersion time) over which epitaxial growth is obtained have been established in each case. Films grown from a benzene and acetone mixture show epitaxy only at temperatures of 58°C or more and with concentrations below 0.1 g/100 ml. The epitaxial relation is (010) [110]PVC∥(001) [110]NaCl. The crystallites in the epitaxial films are of pyramidal shape and the molecular chains are folded in a direction perpendicular to the substrate. Films grown from ethyl methyl ketone solution show epitaxy only at temperatures of 65°C or more for concentrations greater than or equal to 0.15 g/100 ml. Films grown from cyclohexanone solution show epitaxy over a wide range of temperatures and concentrations. The epitaxial relation is (001) [110]PVC∥(001) [110]NaCl and the crystallites are rod- or fibre-like. The molecular chains in these crystallites are folded in a direction parallel to the substrate. Our studies show that epitaxial growth occurs in the earliest stage of growth of the films and further growth results in a mixture of amorphous and polycrystalline regions. The mechanism of epitaxial growth is explained in terms of our model for the growth of polymer chains. Two possible configurations of the molecular chains in the unit cell of PVC on a (001) rocksalt surface are proposed to explain the two epitaxial orientation relations observed.  相似文献   

20.
Atomistic simulations are used to investigate the mechanical properties of copper nanowires (NWs) along 〈1 0 0〉, 〈1 1 0〉 and 〈1 1 1〉 crystallographic orientations under tensile loading at different temperatures. The inter-atomic interactions are represented by employing embedded-atom potential. To identify the defects evolution and deformation mechanism, a centrosymmetry parameter is defined and implemented in the self-developed program. The simulations show that Cu NWs in different crystallographic orientations behave differently in elongation deformations. The stress–strain responses are followed by a particular discussion on yield mechanism of NWs from the standpoint of dislocation moving. Generally, the study on the incipient plastic deformation will be helpful to further understanding of the mechanical properties of nanomaterials. In addition, the Young’s modulus decreased linearly with the increase of temperature. The crystal structure is less stable at elevated temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号