首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究磷酸盐对α半水脱硫石膏水化反应进程、液相离子浓度与过饱和度以及水化产物形貌与硬化体强度的影响,结合X光电子能谱分析技术对磷酸盐缓凝机理进行分析.结果表明,磷酸盐抑制α半水脱硫石膏早期水化,使水化放热减缓,早期水化速率降低,凝结时间延长;磷酸盐改变了二水石膏晶体生长习性,晶形由长棒状转化为板状,并使晶体粗化,硬化体强度降低;磷酸盐通过化学作用吸附在二水石膏晶体表面,抑制离子扩散和晶面生长,这是二水石膏缓凝的内因,对晶面的选择性吸附改变了二水石膏晶体生长习性和形貌,是硬化体强度降低的原因所在.  相似文献   

2.
目的探讨脱硫石膏浆体制备α-半水石膏时转晶剂对其形貌及强度的影响.方法采用高温蒸压法,在升温时间为75 m in、蒸压温度为120℃的条件下水热处理掺有转晶剂的脱硫石膏浆体制得α-半水石膏晶体,采用体视显微镜观测晶体的形貌特征、wΑ-Y300电子液压机测试抗压强度.结果脱硫石膏浆体采用单一转晶剂质量分数0.075%~1%硫酸铝钾效果较好,制得α-半水石膏晶体呈长柱状,抗压强度16.8 MPa;复合转晶剂硫酸铝钾掺量1.8%左右,柠檬酸钠掺量0.08%左右时效果最佳,α-半水石膏晶体呈短柱状,抗压强度30.2 MPa.结论单一转晶剂对α-半水石膏晶体抗压强度的影响并不显著,其中硫酸铝钾效果较为明显,而复合转晶剂对抗压强度提高影响显著,硫酸铝钾与柠檬酸钠作用下抗压强度最高.  相似文献   

3.
通过采用蒸压水溶液法,在升温时间为90 min、蒸压温度为130℃的条件下水热处理掺有转晶剂的脱硫石膏浆体制得α-半水装饰石膏晶体,采用体视显微镜观测晶体的形貌特征,利用WA-Y300电子液压机测试抗压强度发现,升温时间过短或过长都不利于强度的提高,只有在α-半水装饰石膏晶体析出的饱和度与生长速率达到动态平衡时最佳;蒸压时间以转晶最充分时为宜,此时强度最高;浇注时间应控制在α-半水装饰石膏水化之前,浇注温度可略低于蒸压温度.因此脱硫石膏浆体采用高温法制取α-半水装饰石膏浆体的工艺是可行的,升温时间应控制在90 min,6 h蒸压抗压强度最高可达到34.8 MPa,α-半水装饰石膏浆体浇注时间应在2 min左右,浇注温度在120℃时最为合适.  相似文献   

4.
FDN在α半水脱硫石膏表面的吸附特性与分散作用   总被引:2,自引:0,他引:2  
采用紫外吸收光谱分析仪、微电泳仪、X光电子能谱分析技术研究了FDN在α半水脱硫石膏表面的吸附特性、表面电化学性质及其对流动性的影响。结果表明:α半水脱硫石膏对FDN吸附为化学吸附,吸附等温线基本符合Langmuir方程,吸附热为5.76kJ/mol,吸附层厚度为9nm;FDN为平躺吸附,吸附层空间位阻小,其分散作用主要依赖ξ电位的静电斥力,而ξ电位取决于FDN首层吸附量;α半水脱硫石膏水化很快,其水化产物覆盖对静电斥力有屏蔽效应,静电斥力分散作用的稳定性差,流动度经时损失较大。  相似文献   

5.
影响α半水石膏粒度、形貌及强度的因素   总被引:1,自引:2,他引:1  
目的制备高纯度的医用α半水石膏并能进一步控制好晶体的粒度、形貌.方法采用加压水溶液法并在转晶剂作用下制备α半水石膏,在体视显微镜下分析转晶剂、蒸压时间对晶体粒度、形貌的影响及晶体粒度、形貌与强度之间的关系.结果试验结果表明,只有晶体粒度大小适当的、晶体形貌是六方短柱的、晶面完整的α半水石膏才具有较高的强度.制备了二轴平均径12.5μm、长径比2:1、单一粒径水膏比0.22、3d抗压强度达到61.1MPa的α半水石膏.结论复合转晶剂适当的比例和掺量、蒸压时间是控制α半水石膏晶体粒度、形貌及强度的关键因素.  相似文献   

6.
目的 探讨α半水石膏晶体在纯水、硫酸(盐)、有机酸盐介质水溶液中的生长习性.方法 采用加压水溶液法,在0.18MPa压力下水热处理制得α半水石膏晶体,采用激光粒度分析仪、体视显微镜观测晶体的粒度、形貌特征.结果 α半水石膏在纯水介质中沿C轴的生长速度最快,SO42-离子加速晶体粗化,晶体沿C轴的生长速度被抑制,[RCOO-]对晶体沿C轴有良好的压缩作用.结论 α半水石膏晶体在纯水介质中自由生长成针状产物,在硫酸(盐)介质中宽度生长被加速而长度生长被延缓,在有机酸盐介质中生长速度延缓、其"结晶中心"是以二水石膏转变为半水石膏后的晶体为主.  相似文献   

7.
采用常压复合盐溶液水热法对钙基湿法烟气脱硫(FGD)工艺的副产品FGD石膏进行转化,以制备α-半水石膏。利用DSC/TG综合热分析、SEM和化学分析对转化后的石膏样品进行研究。结果表明,FGD石膏转化为α-半水石膏的过程遵循溶解-重结晶机理。在重结晶诱导期内,FGD石膏首先在热盐溶液中溶解,形成硫酸钙过饱和溶液,在一定的过饱和度区域内,α-半水石膏雏晶直接从溶液中析出,发生石膏晶体亚微观结构上的改变。随后石膏雏晶继续生长,形成了均匀粗大的棱柱状α-半水石膏晶体,实现结晶物质在各个晶体上的重新分布。  相似文献   

8.
α半水石膏晶形转化剂作用机理的探讨   总被引:2,自引:0,他引:2  
采用常压盐水溶液法制得具有较高强度的α半水石膏.借助于SEM、DTA、XPS、EPMA着重研究了α半水石膏结晶形态的转化问题。结果表明,复合晶形转化剂效果较好,其作用机理是在C轴方向的晶面上形成网络状吸附层,阻碍了结晶基元在该方向上的结合和生长,使结晶呈六方短柱状。  相似文献   

9.
以脱硫石膏为原料,利用水热法合成了α型半水石膏晶须.研究结果表明,以十二烷基磺酸钠为转晶剂,在120℃条件下反应10 h,可获得较优异的微米级的α型半水石膏产品,研究结果对脱硫石膏的综合利用以及微米级石膏晶须的工业化生产具有一定的指导意义.  相似文献   

10.
α半水石膏晶形转化剂作用机理的探讨   总被引:21,自引:0,他引:21  
采用常压盐水溶液法是具有较高强度的α半水石膏,借助于SEM,DTA,XPS,EPMA着重研究了α半水石膏结晶形态的转化问题,结果表明,复合晶形转化剂结果较好,其作用机理是在C轴方向的晶面上形成网络状吸附层,阻碍了结晶基元在该方向上的结合和生长,使结晶呈六方短柱状。  相似文献   

11.
从FGD残渣中制备α型半水石膏结晶机理的研究   总被引:4,自引:0,他引:4  
借助差示微分扫描量热仪等分析手段 ,得出了溶液结晶法从烟气脱硫残渣中制备α型半水石膏的结晶机理 :烟气脱硫石膏首先经过脱水生成 β型半水石膏 ,再由 β型半水石膏转化为α型半水石膏  相似文献   

12.
共晶磷是磷石膏中仅次于可溶磷的有害杂质,影响了磷石膏的应用性能。采用分析纯模拟共晶磷的生成条件制取共晶磷含量较高的石膏样品,经煅烧成半水石膏后加入到天然建筑石膏中,进行物理力学性能试验,并利用扫描电镜、原子吸收光谱、红外吸收光谱结合化学分析的手段,研究了共晶磷对石膏性能的影响及其作用机理。结果表明:共晶磷明显降低了建筑石膏的水化率,使二水石膏析晶过饱和度降低,晶体粗化,结构疏松,硬化体强度降低。在二水石膏煅烧成半水石膏的过程中共晶磷并没有发生变化,仍存在于石膏晶格中;在建筑石膏水化过程中,共晶磷从晶格中溶出,变成可溶性磷HPO42-溶解在浆体中,HPO42-电离出H+和PO43-,其中PO43-又迅速与溶液中大量存在的Ca2+结合,转变为难溶性Ca3(PO4)2覆盖在晶体表面,阻碍了石膏的进一步水化,从而导致硬化体强度降低,而富余的H+则导致了浆体pH值的降低。  相似文献   

13.
半水石膏性能与微观结构的探讨   总被引:7,自引:0,他引:7  
XRD、SEM分析表明对α型半水石膏晶体呈短柱状、结晶完好,β型半水石膏晶体呈片状、结晶较差;α型半水石膏水化物晶体呈板柱状,晶体交织形成致密硬化体结构,β型半水石膏水化物晶体呈针状、纤维状,晶体交织形成疏松的硬化体结构。晶体结构与形貌上的差异是导致α型半水石膏与β型半水石膏性能特别是力学强度差异的原因。  相似文献   

14.
考察了溶液结晶法制备碳酸钙过程中添加镁离子的作用,得到2种形貌截然不同的球状碳酸钙.结晶体系中[Ca2+]∶[Mg2+]的大小对碳酸钙的晶相结构及形貌有显著影响其值在1.33~2.67的范围是碳酸钙形貌的过渡区,当>2.67时晶体呈现特殊的聚集台阶群生长现象,形成粗面类球形方解石聚晶体;而在<1.33时得到表面相对光滑的微球.合成条件中[Ca2+]∶[CO2-3]的大小对碳酸钙形貌的影响不明显.  相似文献   

15.
本文运用图象分析的方法,从统计角度研究了粉煤灰与石灰混合干磨与混合湿磨制品显微结构的差别,提出了有效托贝莫来石及有效托贝莫来石系数的定量表达式。在对比实验和晶体生长理论的基础上,指出了混合湿磨过程中生成的水化硅酸钙具有“晶核”作用。由于生长的晶核对离子具有“优先吸附”的界面作用和“优先沉淀”的结晶中心作用,克服了水热合成产物优先在孔中生长的局部化现象,减少了无效托贝莫来石数量;缓和了高浓度屏蔽作用及界面近程析晶作用,从而加速了粉煤灰、石灰、石膏的水热反应,提高了制品强度。  相似文献   

16.
采用传统的水热合成法,将La3+/Ca2+直接掺杂到反应物体系中,制备了La3+/Ca2+共掺钛酸钡(BaTiO3)粉体;XRD晶相分析表明,所制备的粉体晶相结构单一,为四方相钙钛矿型晶体结构;SEM形貌分析表明,适量的La3+/Ca2+掺杂有利于钛酸钡陶瓷的致密化烧结,并且能够改善其介电性能。电学性能分析结果表明,随着La3+与Ca2+质量分数比的增大,其介电常数和绝缘电阻先增大后减小,而介电损耗的变化规律则恰好相反。当La3+与Ca2+质量分数比为2∶1时,其介电常数达到最大值,得到了介电常数为4 900、介质损耗为0.014 8、绝缘电阻为3.0×1012Ω的高介电低损耗粉体。  相似文献   

17.
研究了草酸钠对硬石膏水化进程、硬化体显微结构与强度、液相离子浓度与二水石膏析晶过饱和度的影响,从二水石膏晶体成核与生长的角度探讨了草酸钠的作用机理.草酸钠使硬石膏水化率提高,水化热集中,水化潜伏期缩短,水化进程加快;草酸钠使二水石膏晶体细化,硬化体结构致密,强度提高,是硬石膏水化活性的高效激发剂.草酸钠作用机理归纳为:草酸钠与硬石膏反应形成草酸钙沉淀与可溶硫酸盐,使液相SO2-4浓度大幅提高;提高二水石膏析晶过饱和度,使二水石膏临界晶核半径减小,晶体成核与生长速率加快;草酸钠促进硬石膏溶解.  相似文献   

18.
研究了二棕榈磷脂酰胆碱生物Langmuir单层膜对不同形貌碳酸钙晶体的成核和取向生长的调控作用.利用X射线衍射仪(XRD)和扫描电镜(SEM)等技术对晶体的结构和形貌进行了表征和观察.结果表明,在生物单分子膜诱导作用下,通过改变饱和溶液中的Ca2+浓度,可以获得块状和花瓣状不同形貌的碳酸钙晶体,且均为沿(104)晶面取向生长的方解石单晶,并进一步探讨了生物单层膜在晶体生长上的调控机理以及Ca2+浓度对膜控晶体形貌的影响机制.  相似文献   

19.
为获得良好的石膏铸型及提高石膏产品质量,对α-半水石膏及其混合料的性能进行了研究。通过试验,确定了水膏质量比为0.5时,α-半水石膏的抗弯强度较好;α-半水石膏混合了莫来石粉、锆英石粉、增强纤维等成分后,使得整体综合性能大幅上升,最佳质量配比为1:0.25:0.2:0.021;焙烧温度对石膏抗弯强度有显著影响,随着焙烧温度升高,纯α-半水石膏抗弯强度下降较快,混合α-半水石膏强度下降缓慢,最佳焙烧温度为50~60℃。  相似文献   

20.
本文通过考察K在Al-Si合金结晶过程中的各种现象,探讨了K的变质作用机理。结果表明:K在Si晶体生长表面的吸附,一方面阻碍了Si晶体的形核和生长,同时又能促使其产生高次孪晶,使Si晶体的生长形态发生改变。另一方面还促进了α-Al相的形核和生长,使共晶生长领先相由共晶Si转变为α-Al相。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号