首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
针对基本混合蛙跳算法(Shuffled Frog Leaping Algorithm,简称SFLA),收敛速度慢,优化精度低的问题,提出了混沌混合蛙跳算法。将混沌优化思想引入到蛙跳算法中,利用混沌运动的随机性和遍历性,对全局最优个体Xg或随机更新策略中的最差个体Xw进行混沌优化,并用优化结果随机替代当前种群中的某个体或Xw,通过这种处理增强了蛙跳算法摆脱局部极值点的能力,提高了算法的收敛速度和精度。通过对6个测试函数和背包问题进行优化实验,仿真结果表明,混沌混合蛙跳算法的优化性能明显优于基本混合蛙跳算法和相关文献中的改进算法。  相似文献   

2.
求解多背包问题的混合蛙跳算法   总被引:1,自引:0,他引:1  
针对多背包问题,提出一种改进的离散混合蛙跳算法。算法中对青蛙个体采用十进制整数编码方式,应用遗传算法中的交叉操作来对个体进行更新,扩展了传统混合蛙跳算法模型。将改进的算法用于多背包问题求解,仿真实验表明了所提算法的有效性。  相似文献   

3.
混合蛙跳算法(SFLA)是一种全新的群体智能优化算法。针对基本混合蛙跳算法局部搜索能力差,因而优化精度低、收敛速度慢的缺点,引入量子粒子群算法的搜索策略,提出了一种基于量子粒子群搜索策略的混合蛙跳算法(QPSO-SFLA)。通过对基准函数进行测试,实验结果表明改进的算法大大提高了算法的收敛速度,增强了算法的寻优能力。  相似文献   

4.
提出了一种基于灰关联混合蛙跳算法的雷达波形设计方法,以混合蛙跳算法为主体,在局部更 新算子中引入遗传算法的遗传算子,并改进原始蛙跳算法的分组方法,丰富了种群的多样性,同时引入灰关联综合评价法则对适应度函数值加以关联度分析。文中以设计具有低自相关旁瓣和互相关特性的正交多相编码为例,将该算法用于雷达波形设计中。仿真结果表明使用本文算法产生 的波形具备较好的低自相关特性和互相关特性,表明了该算法是有效和可行的。  相似文献   

5.
为提高混合蛙跳算法在优化问题求解中的性能,提出了一种改进混合蛙跳算法。改进算法在原算法基础上加入了变异算子,并根据算法进化过程的不同阶段和进化过程中候选解分布情况,利用模糊控制器对变异算子的变异尺度进行调整,实现了变异算子在解空间中搜索范围的动态调整。通过对优化问题中4个典型测试函数的仿真实验表明,与基本蛙跳算法和已有改进算法相比,改进算法在寻优精度、收敛速度和求解成功率上均有一倍以上的提高,尤其在高维复杂优化问题求解中体现出较强的寻优能力。  相似文献   

6.
针对带阀点效应的经济负荷分配(ELD)问题高维、非凸、非线性的特点,应用混合蛙跳算法(SF-LA)解决电力系统ELD问题。该算法结合了模因演算算法(MA)和粒子群优化(PSO)算法二者的优点,在确保全局收敛和满足约束条件下,能够快速有效地搜索到最优解。通过对多个ELD问题实例进行仿真计算,并与参考文献做比较,结果表明:SFLA对于解决电力系统ELD问题是有效、可行的。  相似文献   

7.
针对SFLA算法运行速度较慢、在优化部分函数问题时精度不高和易陷入局部最优的缺点,提出了一种单种群混合蛙跳算法SPSFLA。该算法采用单个种群,无需对整个种群进行排序,每个个体通过向群体最优个体和群体中心位置学习进行更新。如果当前个体学习没有进步,则对群体最优个体进行变异,并用变异的结果替代当前个体,加快了算法的运行速度和收敛速度,提高了优化精度。仿真实验结果表明,该算法具有更好的优化性能。  相似文献   

8.
基于差分扰动的混合蛙跳算法   总被引:2,自引:0,他引:2  
赵鹏军 《计算机应用》2010,30(10):2575-2577
针对基本混合蛙跳算法在处理复杂函数优化问题时容易陷入局部最优、求解精度低的缺点,借鉴差分进化中的变异思想,提出了一种改进的混合蛙跳算法,利用子群中其他个体的有利信息,对其更新策略进行局部扰动。实验结果表明,改进的混合蛙跳算法对复杂函数优化问题具有较强的求解能力。算法寻优效率高、全局性能好、优化结果稳定,性能明显优于所比较的算法。  相似文献   

9.
针对超视距多机协同空战中的火力分配(WTA)问题,建立了协同空战火力分配的数学模型,提出了采用混合蛙跳算法(SFLA)来求解协同空战火力分配问题,根据无约束化的编码方式,结合交叉、变异的遗传操作,提高了算法的收敛速度以及全局搜索能力,能有效避免陷入局部最优。仿真结果表明,所提出的混合蛙跳算法在解决协同空战火力分配问题中具有高效可行性。  相似文献   

10.
混合蛙跳算法(SFLA)是一种模拟青蛙觅食行为的智能优化算法.算法具有设置参数少、简单易于理解、鲁棒性强等特点.由于该算法提出的时间不长,目前对此算法的研究成果并不多,该算法在理论和实践上还不够成熟,如该算法的鲁棒性、收敛性、稳定性等数学理论还未给出完整的数学证明,算法的适用范围目前还仅限于函数优化、组合优化、单目标优化、多目标优化等方面.本文重点分析研究了该算法的基本原理、应用前景、国内外的研究现状和主要研究内容,以及目前该算法研究过程中出现的问题.  相似文献   

11.
针对传统混合蛙跳算法存在收敛速度慢、容易陷入局部最优和搜索精度不高的缺陷,提出了基于三角函数搜索因子的混合蛙跳算法。该算法将基于三角函数搜索因子的局部进化策略和产生新个体策略引入到混合蛙跳算法中,改进混合蛙跳算法的局部搜索精度和全局收敛性能。实验结果表明,基于三角函数搜索因子的混合蛙跳算法能够显著改善混合蛙跳算法的寻优精度和收敛速度,使算法的搜索效率和稳定性同时得到提高。  相似文献   

12.
求解复杂函数优化问题的混合蛙跳算法*   总被引:12,自引:3,他引:12  
针对基本混合蛙跳算法在处理复杂函数优化问题时容易陷入局部最优、收敛速度慢的缺点,提出了一种改进的混合蛙跳算法。该算法把生物学中的吸引排斥思想引入到混合蛙跳算法中,修正了其更新策略,从而维持了子群的多样性。实验仿真结果表明,改进的混合蛙跳算法提高了算法的收敛速度,有效地避免了SFLA的早熟收敛问题,从而改善了对复杂问题的搜索效率,数值实验结果验证了算法的有效性和鲁棒性。  相似文献   

13.
由于标准粒子群算法易于陷入局部最优和收敛速度慢等问题,提出了一种引入人工蜂群搜索策略和混合蛙跳搜索策略的粒子群算法(ABCSFL-PSO)。使用人工蜂群的搜索策略提高算法的探索能力,避免算法陷入局部最优;使用蛙跳算法中更新最差粒子的策略,来加快算法收敛速度,并进一步提高求解精度。在12个标准测试函数上的仿真实验结果表明,算法性能优良,不仅能够避免陷入局部最优,而且显著提升了收敛速度。  相似文献   

14.
This paper proposes a modified discrete shuffled frog leaping algorithm (MDSFL) to solve 01 knapsack problems. The proposed algorithm includes two important operations: the local search of the ‘particle swarm optimization’ technique; and the competitiveness mixing of information of the ‘shuffled complex evolution’ technique. Different types of knapsack problem instances are generated to test the convergence property of MDSFLA and the result shows that it is very effective in solving small to medium sized knapsack problems. Further, computational experiments with a set of large-scale instances show that MDSFL can be an efficient alternative for solving tightly constrained 01 knapsack problems.  相似文献   

15.
为了充分发掘混合蛙跳算法求解复杂优化问题的能力,提出了一种新颖的改进混合蛙跳算法.改进算法借鉴粒子群优化算法的速度更新方式,通过族群中随机个体、最优个体和最差个体间的位置关系来确定最差个体的更新步长;借鉴差分进化思想,通过伪差分变异产生虚拟个体来更新最差个体,以提高种群开拓能力.通过对四个典型测试函数的仿真实验表明,相比其他几种改进算法,改进算法以100%的概率找到了某些函数的理论最优值,寻优效果更好,收敛成功率更高.  相似文献   

16.
葛宇  梁静  许波  余建平 《计算机工程与应用》2012,48(20):126-130,186
为减小测距误差对无线传感器网络定位精度的影响,将蛙跳算法应用到距离式定位算法的位置计算阶段中,提出了蛙跳定位算法。该算法在适应度函数设计中,根据节点间的测距信息对锚节点进行了加权处理,以降低测距误差对定位结果的影响。结合最小最大法构造初始种群,使其包含更多可行解,从而提高算法效率。仿真结果表明,与采用极大似然估计法或总体最小二乘法来进行位置计算的距离式定位算法相比,该算法有效降低了距离误差对定位精度的影响,具有较高的定位精确度和稳定性,是一种实用的无线传感器网络节点定位方法。  相似文献   

17.
针对云计算环境中的资源调度很少同时兼顾最短完成时间和最低服务成本的问题,设计能够综合反映时间和成本的适应度函数,在此基础上提出了基于分布估计蛙跳算法的云资源调度方法。结合遗传算法的交叉操作重新定义蛙跳算法的进化算子,使其适用于整数编码的调度问题;引入分布估计进化策略,突破了标准蛙跳算法搜索模式的局限,使算法具有更全面的学习能力。仿真实验结果表明,在云资源调度问题的求解中,该算法的收敛性能和寻优能力均优于标准的蛙跳算法和分布估计算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号