首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用差示扫描量热(DSC)法和红外光谱(FT-IR)法对缩水甘油胺型环氧树脂(AG-80)与脂环族缩水甘油酯型环氧树脂(TDE-85)共同改性双马来酰亚胺(BMI)/氰酸酯树脂(CE)的固化反应历程进行了研究,并按照Kissinger和Crane法计算出该改性树脂体系固化反应的动力学参数。结果表明:改性树脂体系的固化反应表观活化能为68.11 kJ/mol,固化反应级数为0.860(接近于1级反应);环氧树脂(EP)可促进CE固化,当固化工艺条件为"150℃/3 h→180℃/2 h"时,改性树脂体系可以固化完全。  相似文献   

2.
采用非等温差示扫描量热(DSC)法对纳米二氧化硅/环氧树脂/双马来酰亚胺/氰酸酯(nano-SiO2/EP/BMI/CE)树脂进行了固化反应动力学和固化工艺研究。通过Kissinger法和Ozawa法求得了nano-SiO2/EP/BMI/CE树脂体系固化反应动力学的表观活化能。结果表明:改性CE树脂体系的固化工艺参数为凝胶温度112℃、固化温度195℃及后处理温度213℃,进而确定了改性CE树脂体系的最佳固化工艺条件为"150℃/3 h→180℃/3 h→200℃/2 h";改性CE树脂体系的平均表观活化能为59.90 kJ/mol。  相似文献   

3.
通过示差扫描分析法(DSC)研究了SiO2/氰酸酯树脂(CE)/含有活性稀释剂的双马来酰亚胺树脂(BMI)复合材料的固化动力学,求得其固化工艺参数为:凝胶温度87.13℃,固化温度137.27℃,后处理温度203.58℃;用Kissinger法和Ozawa法求得其固化动力学参数为:表观活化能6.692kJ/mol,反应级数1.493,Arrhenius方程中的频率因子11.9445s-1。与CE/BMI体系对比表明,SiO2的加入可以降低CE/BMI体系的活化能,使其固化反应可以在较低温度下进行。  相似文献   

4.
用差示扫描量热法研究环氧树脂的固化特性   总被引:3,自引:0,他引:3  
利用差示扫描量热法研究了芳纶复合材料的环氧树脂基体(改性环氧树脂F-46)中固化剂合量对树脂基体固化反应温度,反应热的影响,结果表明,当固化剂含量低于20质量份时,树脂基体的固化反应热随固化剂含量的增加而增加,当固化剂含量超过20质量份后,固化反应热开始下降,此环氧树脂基体的最低固化反应温度为114.3℃,固化反应峰值温度为169.3℃,固化反应表观活化能为80.35kJ/mol,固化反应级数为0.91.  相似文献   

5.
二氧化硅粉体改性E—Si/CE固化动力学的研究   总被引:1,自引:0,他引:1  
采用非等温差示扫描量热法(DSC)研究了纳米二氧化硅(SiO2)和微米SiO2的混合粉体改性环氧基硅烷(E—Si)/氰酸酯(CE)树脂体系固化动力学;用Kissinger、Crane和Ozawa法确定固化动力学参数。结果表明,Kissinger式求得的表观活化能为66.09kJ/mol;Ozawa法求得的表观活化能为7001kJ/mol;根据Crane理论计算该体系的固化反应级数为0.89。计算了不同升温速率所对应的不同温度的频率因子和反应速率常数;求得了改性体系的固化工艺参数:凝胶温度130.74℃、固化温度160.96℃和后处理温度199.16℃,确定了体系的最佳固化工艺。与E—Si/CE体系对比表明,SiO2的加入可以降低E—Si/CE体系的活化能,使其固化能在较低温度下进行。  相似文献   

6.
用等温差示扫描量热法(DSC)在三个不同的固化温度下研究了不同含量端羧基液态橡胶(CTBN)改性环氧树脂的等温固化过程,考察了不同CTBN含量对环氧树脂固化动力学的影响。通过Kamal方程对不同含量CTBN改性环氧树脂固化过程数据进行拟合,得到反应速率常数k1、k2及反应级数m、n,计算得到反应活化能的值,结果表明CTBN质量分数由0%到20%,k1、k2逐渐增大,反应前期活化能由67.34kJ/mol增加到80.31kJ/mol,增加了19.26%,反应后期活化能由94.19kJ/mol增加到180.07kJ/mol,增加了91.18%。  相似文献   

7.
风电叶片用环氧树脂固化动力学特性及力学性能的研究   总被引:2,自引:2,他引:0  
采用动态DSC(差示扫描量热)法研究了亨斯迈LY1564SP和上纬2511-A两种真空成型用环氧树脂体系的固化反应动力学特性和固化温度,并采用Kissinger和Crane法计算出不同固化体系的动力学参数,建立了固化动力学方程。结果表明,上纬2511-A树脂固化体系的活化能为37.57 kJ/mol,亨斯迈LY1564SP树脂固化体系的活化能为42.09kJ/mol,反应级数均小于0.9,近似于1级反应。对比了两种环氧树脂浇铸体的拉伸强度、拉伸模量、弯曲强度、弯曲模量,结果表明,上纬2511-A树脂固化体系力学性能优于亨斯迈树脂体系。  相似文献   

8.
环氧树脂体系(JH2160)为可免低温存储的一种低成本高性能环氧树脂体系。针对JH2160环氧树脂体系的常温储存进行6个月前后固化分析,可知储存半年后的树脂固化反应程度为13.3%,说明此环氧树脂体系常温贮存性好。利用非等温DSC方法对环氧树脂体系(JH2160)进行固化行为研究,使用T-β外推法确定环氧树脂体系(JH2160)的特征固化温度,用Kissinger法和Ozawa法计算体系的活化能分别为78.16kJ/mol和81.03kJ/mol,二者的平均结果得出体系的活化能为79.59kJ/mol;通过Crane法计算出环氧树脂体系(JH2160)反应级数为0.95,确定了JH2160环氧树脂体系的动力学模型。  相似文献   

9.
环氧树脂/聚酰胺/DDM体系的固化行为及力学性能   总被引:2,自引:0,他引:2  
通过非等温DSC法及拉伸性能测试研究了4,4'-二氨基二苯基甲烷(DDM)用量对环氧树脂/聚酰胺651体系的固化反应的影响,计算了固化反应的表观活化能和反应级数,确定了其胶粘剂体系的固化工艺参数。结果表明,胶粘剂中DDM的质量分数达到14%(以环氧树脂质量为基准)时,固化反应放热量达到最大值。固化体系的活化能为53.654 kJ/mol,反应级数为0.895。最佳起始固化温度为40℃,峰值温度为85℃,终止温度为120℃,体系的拉伸强度提高了约50%。  相似文献   

10.
以羟基封端低分子量聚苯醚、环氧氯丙烷为原料,制备出环氧封端的改性聚苯醚(PPOE)。采用示差扫描量热法(DSC)研究了PPOE与双酚A酚醛型环氧树脂(BNE-200)复合体系的固化动力学,计算了共混物固化反应的表观活化能和反应级数。结果表明:各样品在不同升温速率下均只有一个固化峰,固化体系接近于1级固化反应,说明PPOE与BNE-200具有比较好的相容性。随着PPOE用量的增加,固化特征温度呈降低趋势,固化的表观活化能降低。当PPOE用量为80%时,复合体系表观活化能为63.25 kJ/mol,比BNE-200的93.62 kJ/mol降低了32.4%,说明PPOE比BEN-200具有更高的反应活性。  相似文献   

11.
环氧树脂含量对氰酸酯热学性能的影响研究   总被引:1,自引:0,他引:1  
采用示差扫描量热法(DSC)和热失重分析法(TGA)研究了环氧树脂含量对氰酸酯树脂固化反应特性、热稳定性以及热膨胀系数的影响。结果表明,环氧树脂的加入可有效降低改性体系的固化反应活化能,同时体系的热稳定性和尺寸稳定性有不同程度的削弱。当环氧树脂质量分数达到20%时,改性体系的表观活化能为65.4 kJ/mol,耐热温度指数为174℃,较纯氰酸酯树脂分别降低了25.8%和21.4%。当环氧树脂质量分数达到50%时,改性体系的热膨胀系数为65.3 922×10-6/℃(25~150℃),较纯氰酸酯树脂提高了8.13%。  相似文献   

12.
李建  李伟 《广东化工》2012,39(5):270-271,267
采用差示扫描量热法(DSC)研究了N-乙基邻对甲苯磺酰胺/环氧树脂体系的固化过程,研究了不同配比对固化反应的影晌,固化度与固化温度的关系,计算了固化反应表观活化能和反应级数,确定了N-乙基邻对甲苯磺酰胺/环氧树脂体系的固化工艺。结果表明:不同升温速率下,体系固化温度有很大差异,随着升温速率的提高,固化温度增加。通过动力学计算得到体系最佳固化温度为90℃,固化时间为4~6 h,固化体系的活化能为29.1 kJ/mol,反应级数为0.81。  相似文献   

13.
应用差示扫描量热分析(DSC)对不同比例的酚醛型环氧树脂/双酚A型氰酸酯树脂体系固化动力学进行了研究,并通过Kissinger法、Ozawa法和Crane法求得了体系的固化动力学参数。结果表明,当环氧树脂与氰酸酯的摩尔比为2∶1时,由Kissinger法和Ozawa法计算得到的表观活化能在体系中最小,分别为49.05 kJ/mol和54.86 kJ/mol,Crane方程求得的表观反应级数为1~2。  相似文献   

14.
环氧改性氰酸酯树脂固化动力学的研究   总被引:1,自引:1,他引:0  
采用示差扫描量热法(DSC)对缩水甘油醚类环氧树脂(E-51)与脂环族环氧树脂(R-122)共同改性的双酚A型氰酸酯(BADCy)树脂的固化反应历程进行了研究。由Kisserger方程求得共聚体系固化反应的表观活化能为60.5 kJ/mol,根据Crane理论求得固化反应级数为0.89,接近于1级反应。该体系起始固化温度为132.1℃,峰顶固化温度为168.7℃,终止固化温度为246.0℃。研究表明,环氧树脂可促进BADCy的固化,改性体系可在177℃以下实现较完全固化。  相似文献   

15.
利用环氧树脂和二烯丙基双酚A (DP)合成了一种新型烯丙基化合物(改性剂A),然后用该化合物改性双马来酰亚胺树脂(BMI),通过差示扫描量热法研究了BMI/DP/改性剂A体系的固化反应动力学,确定了固化工艺参数,并测试了该体系的力学性能、热性能和溶解性能。结果表明,该体系固化反应的表观活化能为88.512 kJ/mol,反应级数为0.91,为非整数,表明固化反应机理较为复杂;该体系较佳的固化工艺为150℃/1 h+170℃/2 h+200℃/2 h;相对于DP,改性剂A对BMI的增韧效果更为优异,当改性剂A用量为70份时,BMI/DP/改性剂A体系的力学性能最好,其冲击强度为23.31 kJ/m2,弯曲强度为155.8 MPa,热变形温度为224℃,质量损失5%时的温度为389.4℃,可溶于丙酮,具有良好的韧性、热性能和溶解性能。  相似文献   

16.
对TDE-85和AG-80环氧树脂进行非等温DSC实验,采用热分析动力学Kinssinger方程对两种树脂体系的放热机理进行分析,得出TDE-85树脂体系的活化能为E=58.9kJ/mol,指前因子A=5.02×10~6s~(-1);AG-80树脂体系的活化能为E=50.4kJ/mol,指前因子A=3.99×10~6s~(-1).根据DSC升温曲线比较了两种树脂的放热起始温度、放热峰顶温度和结束温度,并以此确定了浇注体固化制度.对两种树脂的浇铸体进行弯曲性能测试,测试得出,TDE-85树脂体系浇铸体的弯曲模量达到1580.03MPa,弯曲强度为61.08MPa;AG-80树脂体系的弯曲模量达到了1804.32MPa,弯曲强度为42.64MPa.并采用高倍数码显微镜对断面进行观察,断面形貌显示,AG-80树脂浇铸体断面十分光滑而TDE-85树脂浇铸体断面存在大量水纹状裂纹.  相似文献   

17.
本文对环氧树脂体系(EP)与加入纳米氢氧化铝(Nano-ATH)的环氧树脂体系进行了固化动力学研究,用n级反应模型分析了一系列差示扫描量热法(DSC)的试验数据,计算出了两个体系的反应活化能分别为63.15kJ/mol和66.43 kJ/mol,反应级数均为一级反应。并对两个体系的玻璃化转变温度(Tg)作了比较。研究结果表明:加入Nano-ATH的树脂体系活化能得到提高,Tg升高约12℃,具有更好的耐热性。  相似文献   

18.
采用示差扫描量热法(DSC)研究了JF-45环氧树脂与E-51环氧树脂改性双酚A型氰酸酯树脂体系的固化反应动力学,根据Kissinger方程、Crane方程、Arrhenius方程对固化过程动力学参数进行了求解,建立了固化反应动力学模型。结果表明,改性氰酸酯固化过程存在2个放热峰;第1个放热峰对应的反应表观活化能、指前因子、反应级数和反应速率常数分别为75.192kJ/mol,7.321×107,0.901和7.321×107exp(-9044.022/T);第2个放热峰相应数据分别为83.073kJ/mol、4.986×107、0.911和4.986×107exp(-9991.941/T)。  相似文献   

19.
耐高温树脂的固化动力学分析及其力学性能   总被引:4,自引:3,他引:1  
本文对一种耐高温环氧树脂体系进行了固化动力学研究,计算出该树脂体系的活化能为70.62kJ/mol、反应级数为0.93,并得到该体系的反应速率常数方程和动力学方程式,确定了树脂体系的固化工艺。还制备了T700碳纤维单向板,并对其力学性能进行测试。结果表明,该树脂体系具有优良的耐热性(树脂固化物的Tg达到218℃)、反应活性高,适用于快速成型固化工艺,其复合材料具有良好的力学性能。  相似文献   

20.
为了提高nano-SiO2在树脂基体中的分散性,采用一种超支化聚硅氧烷修饰的纳米二氧化硅(HBP-SiO2)改性氰酸酯(CE)树脂。利用非等温差示扫描量热法(DSC)研究了HBP-SiO2/CE电子封装材料的固化动力学,求得其固化工艺参数和固化动力学参数分别为:凝胶温度150.17℃,固化温度197.81℃,后处理温度258.97℃;表观活化能11.22kJ/mol,反应级数0.75,频率因子18342.84s-1。研究表明,HBP-SiO2的加入可以降低CE的活化能,使其固化反应可以在较低温度下进行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号