首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用Al(NO3)3、Y(NO3)3和Ce(NO3)3为母盐,碳酸氢铵为沉淀剂,利用撞击流共沉淀法制备YAG:Ce(Y3Al5O12:Ce)球形纳米粉体。利用XRD、FT-IR、SEM和荧光分光光度计对YAG前驱体及煅烧纳米粉体进行了表征,并分析了母盐溶液的浓度、溶液的滴加速度以及煅烧方法和温度对制备YAG纳米粉体的影响。结果表明母盐溶液的浓度、滴加速度及煅烧方法和温度对煅烧粉体的组成、分散性、形貌及发光性能有显著的影响。当初始原料浓度较低(c0=0.055mol/L)时,900℃可以获得纯YAG晶相,不形成任何中间相;初始浓度c0在1.0mol/L以上时,1000℃得到的YAG荧光粉中有YAM、YAP和CeO2杂质相存在;适当的提高加料速度,可以增加粉体的结晶度;采用Na2CO3-S-K2CO3助熔剂辅助煅烧,700℃时已完全转变为YAG相,与直接煅烧法相比,YAG相的完全转变温度降低了约300℃,荧光粉的发光强度比不加熔盐明显提高了。  相似文献   

2.
采用共烧结法制备了硼硅基质Ce: YAG荧光玻璃,研究了烧结温度在600℃~900℃范围内, Ce: YAG荧光玻璃的发光强度变化和色坐标漂移规律。结果表明, 随着烧结温度的升高, Ce: YAG荧光玻璃发光强度先增强后减弱, 700℃烧结时, 荧光玻璃获得最大发光强度; 超过850℃烧结时, 荧光玻璃无发光性能; 同时, 色坐标(x, y)发生漂移, 且比相同烧结温度的荧光粉漂移幅度大。通过X射线粉末衍射仪、差示扫描量热分析仪和X射线光电子能谱分析仪测试分析表明: 随着烧结温度升高, 荧光粉中的Ce3+被玻璃基质氧化成Ce4+, 玻璃液体腐蚀破坏了荧光粉YAG晶体结构, 降低了荧光玻璃的发光强度, 从而导致色坐标劣化漂移。  相似文献   

3.
正白光L ED由于其节能、环保以及长寿命等特点成为下一代照明器件。目前,商品化的白光L ED主要采用蓝光芯片激发3+YAG:Ce黄光荧光粉,芯片发出的蓝光与荧光粉发射的黄光混合形成白光。但是,3+YAG:Ce荧光粉的发射光谱中红光组份不3+足,采用单一Y AG:Ce荧光粉较难获得低色温(C orrelated Color Temperature,CCT4500K)、高显色指数(Color Rendering Index,CRI80)的暖白光器件,导致了其在室内通用照明中应用的局限性。为解决  相似文献   

4.
喷雾干燥-高温热处理两步法制备YAG∶Ce~(3+)荧光粉   总被引:1,自引:0,他引:1  
以喷雾干燥-高温热处理两步法,由含聚合铝阳离子的前驱体悬浊液,制得了YAG∶Ce3+荧光粉。用XRD、SEM、荧光光谱等研究了热处理温度、前驱体悬浊液浓度对YAG晶相的形成、粉末颗粒形貌及发光性能的影响。发现前驱体悬浊液浓度由0.03mol/L提高到0.09mol/L时,热处理后所得荧光粉颗粒尺寸增大,并趋近球形;前驱体悬浊液浓度为0.09mol/L,热处理温度从1300℃提高到1500℃时,荧光粉相对亮度提高。YAG∶Ce3+粉末900℃热处理2h可获YAG相;所制备的YAG∶Ce3+荧光粉颗粒无空心,团聚程度低。  相似文献   

5.
以NH4HCO3-NH3·H2O为混合沉淀剂,采用化学共沉淀法制备CaMoO4:Eu3+红色荧光粉.通过TG-DTA和XRD研究CaMoO4:Eu3+前驱体的热分解和晶相形成过程;采用SEM和PL表征了该荧光粉的表面形貌和发光性能,并与NH4HCO3沉淀剂、NH3·H2O沉淀剂合成的CaMoO4:Eu3+荧光粉以及高温固相法制备的荧光粉进行对比.结果表明,煅烧温度700℃时,前驱体能够完全转换成单一CaMoO4:Eu3+白钨矿结构;煅烧温度900℃制备的荧光粉发光强度达到最大值;采用混合沉淀剂制备的荧光粉大小均匀、无团聚、呈类球型,平均粒径0.9μm.与高温固相法比较,其激发光谱中的Eu-O电荷迁移带向长波方向微小移动,而7F0→5L6(394nm)和7F0→5D2(465nm)的强电子吸收能有效改善红色荧光粉使用性能;与单独的NH4HCO3或NH3·H2O沉淀剂或高温固相法相比,该荧光粉发光性能显著改善,发光强度为传统固相法的2倍.  相似文献   

6.
韩涛  彭玲玲  涂铭旌  朱达川 《功能材料》2013,44(Z1):116-119
采用机械力化学-喷雾干燥技术制备球形YAG:Ce粉体。通过XRD、SEM和荧光光谱等分析方法,研究焙烧温度、混悬液浓度、Ce3+掺杂量对粉体的形貌、粒度及发光性能的影响。结果表明,YAG:Ce前驱体为球形,粒径分布在2~10μm之间,经1300℃焙烧处理,形貌由毛团状转变为米团状。焙烧温度超过900℃时,形成YAG单相,并随着温度升高晶粒尺寸增大。随着混悬液浓度的增加,粉体尺寸明显增大,相应的发光性能先增大后减小,当浓度达到0.2mol/L时,发光性能最佳,是由于其不同的光学性能造成的。随着Ce3+掺杂量x增加,粉体的发光强度先增大后减小,当x=0.06时,达到最大值,粉体的发射光波长先红移后蓝移;当x=0.1时,红移达最大值。由于电多极的相互作用,产生Ce3+浓度淬灭效应,其能量传递的临界距离Rc≈1.9nm。  相似文献   

7.
王莉莉  陈瑾  杨光成  谯志强  聂福德 《功能材料》2012,43(19):2651-2656
以碳酸氢铵为沉淀剂,采用微通道反应与共沉淀法相结合的方法制备出了钇铝石榴石纳米粉体。实验考查了溶液浓度、pH值、Nd3+掺杂等因素对合成纯相YAG纳米粉体的影响。结果表明增大沉淀剂浓度不利于纯相YAG粉体的制备,当沉淀剂浓度为0.4mol/L,Al 3+浓度范围为0.1~0.4mol/L的条件下均得到纯相YAG纳米粉体;采用优化的实验条件,体系pH值维持在8左右,以2%(原子分数)的Nd3+取代YAG中的Y3+,900℃保温4h得到纯相Nd∶YAG粉体,粉体平均粒径在40nm左右,分布均匀,呈近球形。  相似文献   

8.
YAG:Ce纳米荧光粉发光的温度依赖特性   总被引:2,自引:0,他引:2  
用沉淀法制备了YAG:Ce纳米荧光粉. 用X射线粉末衍射仪 (XRD)、扫描电子显微镜 (SEM) 对粉体煅烧过程的相变和形貌进行了表征. 研究了80~400K范围内, YAG:Ce纳米荧光粉发光和衰减的温度依赖特性. 结果表明, 前躯体由纳米颗粒组成. 900℃煅烧时, 粉体由非晶态直接转变为YAG相. YAG:Ce的发光强度随温度的升高而减弱. YAG:Ce纳米荧光粉的衰减包含两个指数项, 长时间项反映了体相Ce3+的荧光衰减, 随着温度的升高不断减小. 短时间项反映了表面Ce3+的荧光衰减, 随着温度的升高呈下降趋势, 由于受到表面效应的影响, 中间出现小幅的阶跃.  相似文献   

9.
采用提拉法生长了白光LED用Ce:YAG单晶, 通过吸收光谱、激发发射光谱和变温光谱对其光学性能和热稳定性进行了表征, 并研究了晶片用于封装白光LED光源中各因素对其光电性能的影响。Ce:YAG晶片能被466 nm波长的蓝光有效激发, 产生500~700 nm范围内的宽发射带。Ce3+的4f→5d轨道的跃迁吸收对应于202、219、247.3、347.4和455.5 nm五个吸收峰, 据此量化分裂的5d能级能量, 依次为21954、29154、40437、45662和49505 cm-1。温度升高, Ce3+2F7/2能量升高导致了发光强度的降低, 可降低幅度(13.28%)不大, 比肩国家标准且要优于目前商用白光光源的Ce:YAG单晶制白光LED光源的封装工艺, 从芯片、驱动电流、晶片厚度和添加物四方面进行讨论。研究结果表明, Ce:YAG单晶是一种新型白光LED用荧光材料。  相似文献   

10.
以Na2SO4-K2SO4为熔盐,采用水热均匀沉淀一熔盐煅烧法制备了YAG:Ce33+黄色荧光粉,应用XRD、SEM、荧光分光光度计等测试手段研究了熔盐辅助煅烧对粉体结构、形貌和发光性能的影响.结果表明,以尿素为沉淀剂,采用水热均匀沉淀法制备的前驱体,经Na2SO4-K2SO4熔盐辅助煅烧,900℃时已完全转变为YAG相,与固相法相比,YAG相的完全转变温度降低了600℃,与前躯体直接煅烧相比,YAG相的完全转变温度降低了300℃,荧光粉的发光强度提高了2.4倍.  相似文献   

11.
采用共沉淀法制备出尺寸分布均匀、分散性良好的立方相钇铝石榴石(YAG)与Ce:YAG纳米粉体.考察了煅烧温度和时间对粉体物相和颗粒大小的影响及Ce~(3+)的掺杂量对Ce:YAG粉体的荧光光谱的影响.借助IR、XRD、BET、SEM和荧光分析仪等测试手段对前驱体、YAG及Ce:YAG纳米粉体进行了表征与分析.结果表明:共沉淀前驱体经900℃煅烧2h后可得到纯立方相的YAG(Ce:YAG)纳米粉体;所得Ce:YAG粉体具有较好的荧光特性且Ce~(3+)的掺杂量增加会造成其荧光光谱红移.  相似文献   

12.
采用湿化学共沉淀法合成了Nd3+掺杂的氧化镥纳米晶粉体,研究了三种不同沉淀剂(NH4OH、NH4HCO3、NH4OH+NH4HCO3)对Nd3+:Lu2O3纳米晶粉体性能的影响.采用NH4OH+NH4HCO3混合溶液作复合沉淀剂所得粉体具有比表面积高(13.37m2/g)、颗粒尺寸小(~30nm)、粒度分布窄(60~160nm)的优点.该粉体经过干压和等静压成型后,素坯从室温至1400℃获得的线性收缩率可达17%,其烧结活性明显高于其它两种沉淀剂所得的粉体.在流动H:气氛下,经1880℃/8h烧结可获得具有优良光学透明性的Nd3+:Lu2O3透明陶瓷,在1080nm波长处的直线透过率超过75%.  相似文献   

13.
化学沉淀法制备纳米氧化铝过程中的防团聚研究   总被引:2,自引:0,他引:2  
分别以无水乙醇、去离子水为溶剂,以NH3·H2O、NH4HCO3为沉淀剂,采用化学沉淀法制备了纳米Al2O3粉体.利用TEM、XRD、FT-IR和激光粒度仪研究了溶剂、沉淀剂、浓度、前驱体等因素对纳米Al2O3粉体制备过程中的团聚程度的影响.结果表明:当NH4HCO3和Al(NO3)3水溶液浓度分别为3.0mol/L和0.3mol/L时,借助超声分散和微波干燥,得到的纳米Al2O3粉体粒度均匀、分散良好,1100℃煅烧所得粉体平均粒径为20nm.  相似文献   

14.
将微波均相沉淀与喷雾干燥相结合,并添加助熔剂辅助煅烧制备出单相YAG:Ce3+荧光粉体,研究了微波均相沉淀与喷雾干燥的共同作用对煅烧条件和YAG:Ce3+荧光粉颗粒形貌、分散性和荧光性能的影响。结果表明,这种单相YAG:Ce3+荧光粉体具有良好分散性,平均粒径为2μm;将微波均相沉淀与喷雾干燥相结合能制备出分散性好的球形YAG前驱体颗粒;添加NaF助熔剂使煅烧温度降低至1150℃,并得到纯YAG晶相;随着NaF添加量的增加荧光粉结晶度提高、发光强度增强、发射光谱蓝移;NaF添加量(质量分数)为6%时荧光粉的荧光强度最高,且与单一助熔剂比较,H3BO3 NaF混合助熔剂能更好的改善YAC:Ce3+的荧光性能。  相似文献   

15.
采用液相沉淀法,乙二醇为分散剂,氨水25%(质量分数,下同)为沉淀剂,通过与正丁醇共沸的方法制备纳米级YAG:Ce荧光粉。利用XRD进行了样品的物相分析,用荧光分光光度计对样品的发射光谱和激发光谱进行测定并用TEM对样品的粒径和形貌进行分析。结果表明:占沉淀剂氨水总浓度8%的分散剂乙二醇此时的样品分散性最好、粒径较小,呈球形。通过物相分析和荧光光谱表明最佳温度为1300℃,Ce的掺杂浓度为0.04时,荧光发射强度最大。  相似文献   

16.
在室温下,采用分步滴定法得到高亮度LED所用的Y3-x-yGdxCeyAl5O12荧光粉,并以0.1mol/L的碳酸氢铵和氨水为沉淀剂,将其分步滴入金属盐离子混合液中,研究了s杂Gd离子对荧光粉发光性能的影响。结果表明,以Ce为激活中心,最佳掺量为0.06,加入助熔剂后,荧光粉的发光性能提高了50%左右;随着Gd3+取代量的增加,荧光粉样品发射光谱的峰值波长可红移5~10nm,同时,Gd3+对发光中心Ce3+的影响增强,当取代浓度x为0.1时发光最强。XRD测试结果表明Gd离子的s入对YAG相的形成并没有影响。  相似文献   

17.
采用共沉淀法在700℃和较短的烧结时间下制备了Zn3(BO3)2和不同浓度的Ce3+、Mn2+离子掺杂的Zn3(BO3)2纳米晶粉末,对合成产物的发光性质及发光机理进行了研究。利用荧光分光光度计、X射线粉末衍射仪以及透射电镜对其光学性能和纳米晶形貌进行了表征。结果表明Ce3+离子掺杂的Zn3(BO3)2样品在340~400nm之间有强的荧光发射,其最高发射峰峰位为365nm,在Ce3+掺量为0.5%(摩尔分数,下同)时发光强度达到最高值。Ce3+取代Zn2+离子作为发光中心,Mn2+离子作为激活剂加入,并不影响荧光发射峰的位置,但能够有效增强其发光强度。当Mn2+离子掺量为0.7%(摩尔分数)时,Ce3+、Mn2+共掺杂的Zn3(BO3)2纳米晶发光强度达到最高值。  相似文献   

18.
在还原气氛下采用高温固相法合成了钇铝石榴石结构的荧光粉Lu2CaMg2Si3O12∶R(Ce3+,Gd3+),其中Gd3+的浓度变化为1~5 mol%。利用X射线衍射仪对其物相进行分析,结果显示:Ce3+的掺入使晶相结构不稳定,出现了少量杂相,而掺入少量Gd3+时,晶相结构不再变化。利用荧光光谱仪对其光学性能进行研究,结果发现随着Ce的浓度增大,发光强度先增大后减小且同时伴随着少许的发光红移,在2 mol%出现浓度淬灭;Gd的掺入对红移的贡献比较明显,最大波长从561 nm(1%Gd)→568 nm(5%Gd),同时也发现发光强度有明显的下降。这种荧光粉的激发波长在465 nm左右,与蓝光LED芯片的发射中心相吻合,而且发射峰明显比YAG要长,所以这种荧光粉能很好的补充YAG的显色性。  相似文献   

19.
Ce:YAG透明陶瓷可与蓝光LEDs/LDs复合, 用于大功率白光LEDs/LDs。本研究通过调整Ce:YAG透明陶瓷的厚度和Ce3+的掺杂浓度, 将组装器件的发射光谱和色坐标从冷白区调整到暖白区。以高纯(≥99.99%)商业粉体α-Al2O3、Y2O3、CeO2为原料, 采用固相反应法制备了(CexY1-x)3Al5O12 (x=0.0005、0.0010、0.0030、0.0050、0.0070和0.0100)透明陶瓷。陶瓷素坯在1750 ℃真空烧结20 h(真空度5.0×10-5 Pa), 之后在马弗炉中退火1450 ℃×10 h。不同掺杂浓度Ce:YAG陶瓷(厚度分别为0.2、0.4、1.0 mm)在800 nm处的直线透过率均大于79%。Ce:YAG荧光陶瓷的热导率随着测试温度和掺杂浓度的增加而降低。采用有限元方法模拟不同厚度的Ce:YAG陶瓷和LED组装的热分布, 比较了三种封装方式的热分布。将Ce:YAG荧光陶瓷与LEDs/LDs复合, 制备出色坐标分别为(0.3319, 0.3827)和(0.3298, 0.3272)的白光, 发光效率分别为122.4和201.5 lm/W。将Ce:YAG荧光陶瓷和10、50 W商用蓝光LED芯片组合成熟灯具, 可用于商业用途。Ce:YAG透明陶瓷在大功率照明和显示的彩色转换材料应用领域极具潜力。  相似文献   

20.
以稀土氧化物、硝酸铝为原料,采用溶胶-凝胶法合成了Yb3+、Tm3+共掺的钇铝石榴石(Y3Al5O12,YAG)纳米晶粉体。采用X射线衍射(XRD)确定了1200℃煅烧后的晶体粉为纯YAG结构,无杂质相,晶体尺寸约为90nm;该粉体在波长为980nm的半导体激光器激发下发射出中心波长为487nm的蓝色上转换荧光,对应于Tm3+离子的1G4→3H6的跃迁。发光强度和激发功率关系的研究揭示了其为双光子过程,Tm3+的激发态吸收及Tm3+、Yb3+间的交叉驰豫型能量传递和是该上转换发光的主要机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号