共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Computers & Electrical Engineering》2014,40(7):2139-2149
This paper presents a method that combines variable frame length and rate analysis for speech recognition in noisy environments, together with an investigation of the effect of different frame lengths on speech recognition performance. The method adopts frame selection using an a posteriori signal-to-noise (SNR) ratio weighted energy distance and increases the length of the selected frames, according to the number of non-selected preceding frames. It assigns a higher frame rate and a normal frame length to a rapidly changing and high SNR region of a speech signal, and a lower frame rate and an increased frame length to a steady or low SNR region. The speech recognition results show that the proposed variable frame rate and length method outperforms fixed frame rate and length analysis, as well as standalone variable frame rate analysis in terms of noise-robustness. 相似文献
3.
基于遗传算法和强化学习的贝叶斯网络结构学习算法 总被引:1,自引:0,他引:1
遗传算法是基于自然界中生物遗传规律的适应性原则对问题解空间进行搜寻和最优化的方法。贝叶斯网络是对不确定性知识进行建模、推理的主要方法,Bayesian网中的学习问题(参数学习与结构学习)是个NP-hard问题。强化学习是利用新顺序数据来更新学习结果的在线学习方法。介绍了利用强化学习指导遗传算法,实现对贝叶斯网结构进行有效学习。 相似文献
4.
贝叶斯网络分类器(BNC)结构学习是一个NP难题。贪婪搜索(GS)算法是一种有效且准确性较高的结构学习算法,但贪婪搜索算法很容易陷入局部最优。标准遗传算法是一种全局搜索优化算法,它通过模拟生物种群的进化过程,得到全局最优解。但就其个体而言,个体局部解的质量无法保证,不具备局部寻优的能力。提出了将两种算法相结合,以贝叶斯信息标准(BIC)测度为评价函数,得到一种混合遗传算法,实现了它们的优势互补。实验表明:该算法优于单独利用GS算法进行Bayesian网络结构学习,从而说明该算法的正确性和有效性。 相似文献
5.
针对非限条件下人脸识别准确率较低的问题,提出一种基于粒神经网络(MNN)与遗传算法优化的人脸识别算法。对人脸库进行初始化分析决定每个粒子中人脸的分布,将同一复杂度级别的数据分为一组;将人脸分为额头、眼睛与嘴三个部分,粒神经网络采用不同数量的数据点对面部子区域进行训练,获得多个训练结果;设计了一种多级的遗传算法对粒神经网络进行优化。基于两组公开人脸数据库的对比实验结果表明,该算法的识别准确率优于其他人脸识别算法。 相似文献
6.
In this research, neural networks (NNs) and genetic algorithms (GAs) are used together in a hybrid approach to reduce the computational complexity of feature recognition problem. The proposed approach combines the characteristics of evolutionary technique and NN to overcome the shortcomings of feature recognition problem. Consideration is given to reduce the computational complexity of network with specific interest to design the optimum network architecture using GA input selection approach. In order to evaluate the performance of the proposed system, experimental results are compared with previous NN based feature recognition research. 相似文献
7.
8.
用于态势评估中因果推理的贝叶斯网络 总被引:4,自引:0,他引:4
1 引言贝叶斯网络是由R.Howard和J.Matheson于1981年提出来的,它主要用来表述不确定的专家知识。后来经过J.Pearl,D.Heckerman等人的研究,贝叶斯网络的理论及算法有了很大的发展。作为一种知识表示和进行概率推理的框架,贝叶斯网络在具有内在不确定性的推理和决策问题中已经得到了广泛的应用,例如概率专家系统、计算机视觉和数据挖掘等。 相似文献
9.
BP网络作为人工神经网络的重要分支,已经广泛应用于手写数字识别。然而BP神经网络存在训练时间长、易陷入局部最小的问题。为了克服这些问题,提出了一种改进的遗传算法,并用该算法来优化神经网络的权值和阈值。最后,利用基于该算法的神经网络对大量USPS手写数字样本集进行训练。实验结果表明,该算法比单纯的BP算法具有更快的识别速率。 相似文献
10.
Upendra RathnayakeAuthor Vitae Maximilian OttAuthor Vitae 《Performance Evaluation》2011,68(9):916-926
Modern mobile devices are increasingly capable of simultaneously connecting to multiple access networks with different characteristics. Restricted coverage combined with user mobility will vary the availability of networks for a mobile device. Most proposed solutions for such an environment are reactive in nature, such as performing a vertical handover to the network that offers the highest bandwidth. But the cost of the handover may not be justified if that network is only available for a short time. Knowledge of future network availability and their capabilities are the basis for proactive schemes which will improve network selection and utilization. We have previously proposed a prediction model that can use any available context such as GSM Location Area, WLAN presence or even whether the power cable is plugged in, to predict network availability.As it may not be possible to sense all of the context variables that influence future network availability, in this paper we introduce a generic, new model incorporating a hidden variable to account for this. Specifically, we propose a Dynamic Bayesian Network based context prediction model to predict network availability. Predictions performed for WLAN availability with the real user data collected in our experiments show 20% or more improvement compared to both of our earlier proposals of order 1 and 2 semi-Markov models. 相似文献
11.
1 引言近年来,人脸识别作为图像分析和理解最成功的应用之一,受到研究人员广泛的关注。脸部特征抽取选择是人脸识别关键问题之一。现有的脸面特征抽取主要有两类,一类是基于局部几何特征的系统,一类是基于整体模版匹配的系统。在基于局部几何特征的系统中,通过检测眼睛,鼻子,嘴等面部特征和它们之间的相互关系(距离,面积,角度)来描述脸面。这种方法可以有效降低数据量,但是目前脸面特征的检测和测量技术还不能满足这种方法的要求。基于整体模 相似文献
12.
改进的遗传算法在车牌自动识别系统中的应用 总被引:1,自引:2,他引:1
在车牌自动识别系统中,如何选择对车牌字符分类能力强的特征组合是系统面临的关键问胚。针对传统组合优化方法用于特征选择的种种缺陷和简单遗传算法过早收敛的缺点,提出了利用伪并行、最优解保存和自适应参数调整相结合的改进的遗传算法对提取的车牌字符图像众多特征进行优化选择的策略。仿真实验证明,改进的遗传算法不但从收敛速度和搜索能力上优于简单的遗传算法,而且可以有效的避免出现早熟现象,防止陷入局部最优;所提出的特征选择算法不仅提高了车牌字符识别率。而且识别结果十分稳定。 相似文献
13.
14.
Andrei TOLSTIKOV Xin HONG Jit BISWAS Chris NUGENT Liming CHEN Guido PARENTE 《控制理论与应用(英文版)》2011,9(1):018-027
Ambient assistive living environments require sophisticated information fusion and reasoning techniques to accurately identify activities of a person under care. In this paper, we explain, compare and discuss the application of two powerful fusion methods, namely dynamic Bayesian networks (DBN) and Dempster-Shafer theory (DST), for human activity recognition. Both methods are described, the implementation of activity recognition based on these methods is explained, and model acquisition and composition are suggested. We also provide functional comparison of both methods as well as performance comparison based on the publicly available activity dataset. Our findings show that in performance and applicability, both DST and DBN are very similar; however, significant differences exist in the ways the models are obtained. DST being top-down and knowledge-based, differs significantly in qualitative terms, when compared with DBN, which is data-driven. These qualitative differences between DST and DBN should therefore dictate the selection of the appropriate model to use, given a particular activity recognition application. 相似文献
15.
BK算法是动态贝叶斯网络(DBNs)的一种主要近似推理方法,但对网络的人工分割会引入较大误差.首先通过将决策结点转换成随机结点,给出基于DBNs的Roboeup协作问题的一种建模方法;然后,给出一种引入分割团的新BK算法,以减小网络分割产生的误差,并对Robocup中的两个球员配合射门问题进行推理.引入分割团的BK算法和1.5片联合树推理算法的比较实验结果表明,引入分割团使BK算法在精度损失较小的情况下,时间性能有显著提高. 相似文献
16.
基于遗传算法的Bayesian网结构增量学习的研究 总被引:1,自引:0,他引:1
已建成的Bayesian网与领域环境间可能存在较大偏差,加之领域本身固有的动态变化特性,因此在观察到新数据时,改善Bayesian网的性能和优化网络结构是十分必要的.提出了一种基于遗传算法的Bayesian网(包含结构和参数)求精算法.该算法基于上次的求精结果把已有的不完备数据转化成完备数据,以期望充分统计因子作为已有数据的主要存储形式,基于本次求精过程中的当前最佳个体对新数据进行完备化,并由遗传操作综合利用新数据和已有数据进行求精.模拟实验结果表明,该增量学习算法能较有效地从不完备数据中求精Bayesian网. 相似文献
17.
18.
基于遗传算法的Bayesian网中连续变量离散化的研究 总被引:5,自引:1,他引:5
文中如何从含有离散变量和连续变量的混合数据中学习Bayesian网进行了研究,提出了一种基于遗传算法的连续变量散化算法,在该处中给出了兼顾离散模型准确度和复杂度的适应度函数;并基于对离散化的实质性分析,定义了离散策略等价的概念,由此制定了离散策略的编码方案;进一步设计了变换离散策略的遗传算法。算法不存在局部极值问题,且不需要事先给定变量序关系,模拟实验结果表明,该算法能有效地对连续变量散化,从而使得从混合数据中学到的Bayesian网具有较好性能。 相似文献
19.
20.
《Expert systems with applications》2014,41(11):5190-5200
The objective of this research is to select a reduced group of surface electromyographic (sEMG) channels and signal-features that is able to provide an accurate classification rate in a myoelectric control system for any user. To that end, the location of 32 sEMG electrodes placed around-along the forearm and 86 signal-features are evaluated simultaneously in a static-hand gesture classification task (14 different gestures). A novel multivariate variable selection filter method named mRMR-FCO is presented as part of the selection process. This process finds the most informative and least redundant combination of sEMG channels and signal-features among all the possible ones. The performance of the selected set of channels and signal-features is evaluated with a Support Vector Machine classifier. 相似文献