首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
S-doped microporous carbon materials were synthesized by the chemical activation of a reduced-graphene-oxide/poly-thiophene material. The material displayed a large CO2 adsorption capacity of 4.5 mmol g−1 at 298 K and 1 atm, as well as an impressive CO2 adsorption selectivity over N2, CH4 and H2. The material was shown to exhibit a stable recycling adsorption capacity of 4.0 mmol g−1. The synthesized material showed a maximum specific surface area of 1567 m2 g−1 and an optimal CO2 adsorption pore size of 0.6 nm. The microporosity, surface area and oxidized S content of the material were found to be the determining factors for CO2 adsorption. These properties show that the as synthesized S-doped microporous carbon material can be more effective than similarly prepared N-doped microporous carbons in CO2 capture.  相似文献   

2.
A commercial microporous–mesoporous granular activated carbon was modified by oxidation with either H2O2 in the presence or absence of ultrasonic irradiation, or NaOCl or by a thermal treatment under nitrogen flow. Raw and modified materials were characterized by N2 adsorption–desorption measurements at 77 K, Boehm titrations, pH measurements and X-ray photoelectron spectroscopy. Ibuprofen adsorption kinetic and isotherm studies were carried out at pH 3 and 7 on raw and modified materials. The thermodynamic parameters of adsorption were calculated from the isotherms obtained at 298, 313 and 328 K. The pore size distribution of carbon loaded with ibuprofen brought out that adsorption occurred preferentially into the ultramicropores. The adsorption of ibuprofen on pristine activated carbon was found endothermic, spontaneous (ΔG° = −1.1 kJ mol−1), and promoted at acidic pH through dispersive interactions. All explored oxidative treatments led mainly to the formation of carbonyl groups and in a less extent to lactonic and carboxylic groups. This then helped to enhance the adsorption uptake while decreasing adsorption Gibbs energy (notably −7.3 kJ mol−1 after sonication in H2O2). The decrease of the adsorption capacity after bleaching was attributed to the presence of phenolic groups.  相似文献   

3.
Crofton weed was converted into a high-quality activated carbon (CWAC) via microwave-induced CO2 physical activation. The operational variables including activation temperature, activation duration and CO2 flow rate on the adsorption capability and activated carbon yield were identified. Additionally the surface characteristics of CWAC were characterized by nitrogen adsorption isotherms, FTIR and SEM. The operating variables were optimized utilizing the response surface methodology and were identified to be an activation temperature of 980 °C, an activation duration of 90 min and a CO2 flow rate of 300 ml/min with a iodine adsorption capacity of 972 mg/g and yield of 18.03%. The key parameters that characterize quality of the porous carbon such as the BET surface area, total pore volume and average pore diameter were estimated to be 1036 m2/g, 0.71 ml/g and 2.75 nm, respectively. The findings strongly support the feasibility of microwave heating for preparation of high surface area porous carbon from Crofton weed via CO2 activation.  相似文献   

4.
Four commercial activated carbons with different chemical and textural characteristics were modified by gamma irradiation under five different conditions: irradiated in absence of water, in presence of ultrapure water, in ultrapure water at pH = 1.0 and 1000 mg L−1 Cl, in ultrapure water at pH = 7.5 and 1000 mg L−1 Br, and in ultrapure water at pH = 12.5 and 1000 mg L−1 NO3. Changes in surface chemistry were studied by X-ray photoelectron spectroscopy; pH of point of zero charge, total acidic groups and total basic groups, which were determined by assessment with HCl and NaOH; and textural changes were determined by obtaining the corresponding adsorption isotherms of N2 and CO2. Outcomes show that the activated carbon surface chemistry can be modified by gamma irradiation and that the changes depend on the irradiation conditions. Modifications in the sp2 hybridization of the surface carbons suggest that the irradiated carbons undergo graphitization. Measurements of structural parameters indicate that the irradiation treatment does not modify the textural properties of the carbons. Finally, studies of pristine and irradiated activated carbons using diffuse reflectance spectroscopy with the Kubelka–Munk function revealed a reduction in band gap energy in the irradiated carbons associated with an increase in sp2 hybridization of the carbon atoms.  相似文献   

5.
A series of renewable nitrogen-containing granular porous carbons with developed porosities and controlled surface chemical properties were prepared from poplar anthers. The preparation conditions such as pre-carbonization and activation temperatures and KOH amount significantly influence the structures and chemical compositions of the porous carbons, the CO2 adsorption capacities of which are highly dependent on their pore structures, surface areas, nitrogen contents and adsorption conditions. The sample with developed microporosity, especially with the pores between 0.43 and 1 nm and high nitrogen content shows high CO2 adsorption capacity at 1 bar and 25 °C. In contrast, when the adsorption pressure is higher than 5 bar, its CO2 adsorption capacity is dominated by its surface area, and more accurately by its pore volume. Irrespective of this, if the pressure was decreased to 0.1 bar, its CO2 capture ability is closely correlated to its nitrogen content but not to its porosity. By optimizing the preparation conditions, a porous carbon with a surface area of 3322 m2 g−1 and a CO2 adsorption capacity as high as 51.3 mmol g−1 at 50 bar and 25 °C was prepared.  相似文献   

6.
Nanoporous S-doped carbon and its composites with graphite oxide were tested as adsorbents of CO2 (1 MPa at 0 °C) after degassing either at 120 °C or 350 °C. The adsorption capacities were over 4 mmol/g at ambient pressure and 8 mmol/g at 0.9 MPa in spite of a low volume of micropores. The nitrogen adsorption experiments showed an increase in porosity upon an increase in the degassing temperature. The extent of this effect depends on the stability of surface groups. Interestingly, the CO2 adsorption, especially at low pressure, was not affected. The good performance is due to the presence of ultramicropores similar in sizes to CO2 molecule and to sulfur in various functionalities. Sulfur incorporated to aromatic rings enhances CO2 adsorption via acid–base interactions in micropores. Moreover, sulfonic acids, sulfoxides and sulfones attract CO2 via polar interactions. Hydrogen bonding of CO2 with acidic groups on the surface can also play an important role in the CO2 retention. These carbons have high potential for application as CO2 removal media owing to their high degree of pore space utilization. The results obtained also show that high degassing temperatures might result in the decomposition of surface groups and thus in changes in surface interactions.  相似文献   

7.
Highly microporous carbon spheres for CO2 adsorption were prepared by using a slightly modified one-pot Stöber synthesis in the presence of potassium oxalate. Formaldehyde and resorcinol were used as carbon precursors, ammonia as a catalyst, and potassium oxalate as an activating agent. The resulting potassium salt-containing phenolic resin spheres were simultaneously carbonized and activated at 800 °C in flowing nitrogen. Carbonization of the aforementioned polymeric spheres was accompanied by their activation, which resulted in almost five-time higher specific surface area and total pore volume, and almost four-time higher micropore volume as compared to analogous properties of the carbon sample prepared without the salt. The proposed synthesis resulted in microporous carbon spheres having the surface area of 2130 m2 g−1, total pore volume of 1.10 cm3 g−1, and the micropore volume of 0.78 cm3 g−1, and led to the substantial enlargement of microporosity in these spheres, especially in relation to fine micropores (pores below 1 nm), which enhance CO2 adsorption. These carbon spheres showed three-time higher volume of fine micropores, which resulted in the CO2 adsorption of 6.6 mmol g−1 at 0 °C and 1 atm.  相似文献   

8.
Several million tonnes of oil sands coke are generated each year in Alberta, Canada as a by-product of bitumen upgrading. Due to its high carbon content, oil sands coke can be a suitable precursor for the preparation of activated carbon. In this study, delayed and fluid oil sands coke were physically activated in a muffle furnace under select conditions of activation time (2–6 h), temperature (800–900 °C), steam rate (0.3–0.5 mL/min), and activation atmosphere (CO2, CO2 + steam, and N2 + steam). The activated products were characterized using thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, nitrogen adsorption, iodine and methylene blue tests. An increase in activation time and temperature resulted in higher surface areas in both delayed and fluid coke due to an enhanced etching of pores. An increase in steam rate led to the production of the highest specific surface area (577 m2/g) and iodine number (670 mg/g) within delayed coke; whereas, a lower steam rate resulted in the production of the highest specific surface area (533 m2/g) and iodine number (530 mg/g) in activated fluid coke samples.  相似文献   

9.
We report the preparation of micro-/mesoporous carbon monolithic xerogels by means of a two-step approach that comprises (1) hydrothermal carbonization of glucose in the presence of graphene oxide (GO) sheets as morphology-directing agents and (2) chemical activation of the resulting hydrothermal carbon (HTC) xerogels with KOH. The as-prepared HTC xerogels were made up of a random assembly of thin (<30 nm) carbon platelets, which were interpreted to arise via dehydration and condensation reactions of glucose at catalytically active (acidic) sites present on the surface of GO. The chemical activation afforded xerogels with large surface areas and pore volumes (up to ∼2000 m2 g−1 and 1.15 cm3 g−1, respectively) and a cellular morphology, which could be attributed to the combined effect of the activating agent and the unusual, compliant nature of the HTC xerogel. Additionally, the use of different activation conditions allowed fine-tuning the porous texture of the activated xerogels. Finally, the activated carbon xerogels displayed CO2 uptake capacities up to 4.9 mmol g−1 at 0 °C and 1 bar, as well as an efficient performance (between 600 and 700 mg g−1) in the adsorption of bulky dyes, thus demonstrating their application potential.  相似文献   

10.
The removal of carbon residue from ZnAl2O4 nanopowders by annealing at 500–800 °C leads to a decrease of specific surface area from 228.1 m2/g to 47.6 m2/g. At the same time, the average crystallite size increased from 5.1 nm to 14.9 nm. In order to overcome these drawbacks, a new solution for removing the carbon residue has been suggested: chemical oxidation using hydrogen peroxide. In terms of carbon removal, a H2O2 treatment for 8 h at 107 °C proved to be equivalent to a heat treatment of 1 h at 600 °C. The benefits of chemical oxidation over thermal oxidation were obvious. The specific surface area was much larger (188.1 m2/g) in the case of the powder treated with H2O2. The average crystallite size (5.8 nm) of ZnAl2O4 powder treated with H2O2 was smaller than the crystallite size (8.2 nm) of the ZnAl2O4 powder annealed at 600 °C.  相似文献   

11.
《Fuel》2005,84(14-15):1854-1857
The effect of pre-oxidation on the porosity evolution in heavy-oil fly ash subjected to activation with CO2 has been investigated. After preliminary acid leaching, used to reduce the mineral matter content, the leached fly ash has been oxidised in air at 250 °C for 36 h. Pyrolysis was conducted on the unoxidised and oxidised leached fly ash at 900 °C for 2 h and the resultant chars were activated with CO2 at 900 °C for different times. The activated samples have been characterised as regards the surface area and the pore volume.The pre-oxidation enhances the porosity development mainly in terms of mesoporosity leading to obtain activated products with higher surface area (about 270 m2/g at a 40% burn-off).  相似文献   

12.
Arsenic removal from water was investigated using activated carbon. The chemical activated carbon (CAC) prepared using H3PO4 from jute stick largely featured micropore structure with surface functional groups, while meso- and macropore structures were mainly developed in physical activated carbon (PAC). The CAC and PAC reduced arsenic concentration to 45 and 55 μg L−1, respectively, from 100 μg L−1 while iron-loaded CAC reduced to 3 μg L−1, which is lower than the upper permissible limit (10 μg L−1). The micropore structure of CAC along with complexation affinity of iron species towards arsenic species attributed to enhanced separation of arsenic.  相似文献   

13.
The preparation, characterization and CO2 uptake performance of N-doped porous carbon materials and composites derived from direct carbonization of ZIF-8 under various conditions are presented for the first time. It is found that the carbonization temperature has remarkable effect on the compositions, the textural properties and consequently the CO2 adsorption capacities of the ZIF-derived porous materials. Changing the carbonization temperature from 600 to 1000 °C, the composites and the resulting porous carbon materials possess a tuneable nitrogen content in the range of 7.1–24.8 wt%, a surface area of 362–1466 m2 g−1 and a pore volume of 0.27–0.87 cm3 g−1, where a significant proportion of the porosity is contributed by micropores. These N-doped porous composites and carbons exhibit excellent CO2 uptake capacities up to 3.8 mmol g−1 at 25 °C and 1 bar with a CO2 adsorption energy up to 26 kJ mol−1 at higher CO2 coverages. The average adsorption energy for CO2 is one of the highest ever reported for any porous carbon materials. Moreover, the influence of textural properties on CO2 capture performance of the resulting porous adsorbents has been discussed, which may pave the way to further develop higher efficient CO2 adsorbent materials.  相似文献   

14.
The immobilization of 2,4-diamino-1,3,5-triazine on carbon Vulcan XC72R surface was achieved through the in situ diazotization of melamine. The resulting grafted species represent 2.3 wt.% of the modified material and are thermally stable up to 265 °C. Nitrogen adsorption isotherms show that the carbon microporosity decreased after modification translating in a 25% decrease of the BET surface area. X-ray photoelectron spectroscopy data suggest the presence of 2,4-diamino-1,3,5-triazine groups at the surface by bonding through a carbon–carbon bond and/or by an azo bridge. These materials were evaluated as CO2 sorbents by thermal swing adsorption in a thermogravimetric analyzer. At 40 °C, the modified powders displayed a maximal adsorption capacity of 0.23 mmol/g that is smaller than the initial unmodified material. Nonetheless adsorption capacity of the grafting groups helps to improve the selectivity of the materials although physisorption seems to be the main mechanism for CO2 capture.  相似文献   

15.
The nitridation of elemental silicon powder at 900–1475 °C was studied by X-ray photoelectron spectroscopy (XPS), X-ray excited Auger electron spectroscopy (XAES), XRD, thermal analysis and 29Si MAS NMR. An initial mass gain of about 12% at 1250–1300 °C corresponds to the formation of a product layer about 0·2 μm thick (assuming spherical particles). XPS and XAES show that in this temperature range, the surface atomic ratio of N/Si increases and the ratio O/Si decreases as the surface layer is converted to Si2N2O. XRD shows that above 1300 °C the Si is rapidly converted to a mixture of α- and β-Si3N4, the latter predominating >1400 °C. In this temperature range there are only slight changes in the composition of the surface material, which at the higher temperatures regains a small amount of an oxidised surface layer. By contrast, in the interval 1400–1475 °C, the 29Si MAS NMR chemical shift of the elemental Si changes progressively from about −80 ppm to −70 ppm, in tandem with the growth of the Si3N4 resonance at about −48 ppm. Possible reasons for this previously unreported change in the Si chemical shift are discussed. ©  相似文献   

16.
《Fuel》2005,84(12-13):1593-1596
The effect of pre-oxidation on the porosity evolution in heavy oil fly ash subjected to activation with CO2 has been investigated. After preliminary acid leaching, used to reduce the mineral matter content, the leached fly ash has been oxidised in air at 250 °C for 36 h. Pyrolysis was conducted on the unoxidised and oxidised leached fly ash at 900 °C for 2 h and the resultant chars were activated with CO2 at 900 °C for different times. The activated samples have been characterised as regards the surface area and the pore volume.The pre-oxidation enhances the porosity development mainly in terms of mesoporosity leading to obtain activated products with higher surface area (about 270 m2/g at a 40% burn-off).  相似文献   

17.
Carbon was deposited on a mild steel cathode during electrolysis in the molten mixture of Li2CO3 and K2CO3 (mole ratio: 62:38) under CO2 or mixed N2 and CO2 atmospheres at 3.0–5.0 V and 540–700 °C. In a three-electrode cell, cyclic voltammetry was applied on a platinum working electrode to study the reduction and deposition processes. A two-electrode cell helped correlate electrolysis variables, e.g. temperature and voltage, with the deposition rate, current efficiency, and properties of the deposited carbon powders. High current efficiency (>90%) and deposition rate (>0.11 g cm−2 h−1) were achieved in the study. Elemental analysis of the electro-deposits, following washing with HCl solutions (2.3–7.8 mol L−1), showed carbon as the dominant element (75–95 wt.%) plus oxygen (5–10 wt.%) and small amounts of other elements related to materials of the electrolytic cell. Thermogravimetry detected fairly low onset combustion temperatures (310–430 °C), depending on the electrolysis and acid washing conditions. Amorphous and various nanostructures (sheet, rings and quasi-spheres) were revealed by electron microscopy in carbon samples deposited under different process conditions. The specific surface area of the carbon deposited at 5.0 V and 540 °C was as high as 585 m2 g−1. An analysis of the energy consumption suggests several ways for efficiency improvement so that the electrolytic carbon from CO2 will become commercially attractive.  相似文献   

18.
In this work, we examine the use of the amidoxime functional group grafted onto a hierarchical porous carbon framework for the selective capture and removal of carbon dioxide from combustion streams. Measured CO2/N2 ideal selectivity values for the amidoxime-grafted carbon were significantly higher than the pristine porous carbon with improvements of 65%. Though the overall CO2 capacity decreased slightly for the activated carbon from 4.97 mmol g−1 to 4.24 mmol g−1 after surface modification due to a reduction in the total surface area, the isosteric heats of adsorption increased after amidoxime incorporation indicating an increased interaction of CO2 with the sorbent. Total capacity was reproducible and stable after multiple adsorption/desorption cycles with no loss of capacity suggesting that modification with the amidoxime group is a potential method to enhance carbon capture.  相似文献   

19.
Nitrogen-rich carbon precursors are prepared and subsequently used for the preparation of N-doped porous carbons (NPCs). Two carbon precursors (CPs), CP-60 and CP-40, are prepared at different temperatures, 60 °C and 40 °C, respectively. The obtained CP materials are almost nonporous based on the N2 adsorption/desorption analysis. These nonporous CP materials are converted into NPC materials through a carbonization at 800 °C. Porous NPC-60-800 and NPC-40-800 are prepared from CP-60 and CP-40, respectively. In contrast to the CP materials, the NPC materials exhibit higher surface areas. The surface areas of NPC-60-800 and NPC-40-800 are 422.9 m2 g−1 and 520.8 m2 g−1, respectively. The respective N-contents of NPC-60-800 and NPC-40-800 materials are 4.30 and 3.54 wt.% based on the elemental analysis. The types of N-containing groups of NPC materials are investigated by X-ray photoelectron spectroscopy (XPS) analysis. The NPC materials are good sorbents for CO2 storage. The heats of CO2 adsorption (Qst) are 48.4 kJ mol−1 for NPC-60-800 and 47.0 kJ mol−1 for NPC-40-800. Both materials are also good H2 sorbents at 77 K: 1.23 wt.% (NPC-60-800) and 1.22 wt.% (NPC-40-800).  相似文献   

20.
A molded carbon/silica composite with high micro- and mesoporosity, as well as a high bulk density, was fabricated by activating a disk-molded precursor made from carbonized rice husk (RH) and beet sugar (BS) at 875 °C in CO2. The pore structure of the RH- and BS-based carbon/silica composite (RBC) was analysed in relation to the bulk density. An activation time of 2.0 h provided the largest BET specific surface area (1027 m2/g) and total pore volume (0.68 cm3/g) and a low bulk density (0.54 g/cm3). An RBC that was first activated for 1 h was immersed again in BS syrup and then activated in CO2 for 1 h. This two-step activation process provided both a high bulk density (0.69 g/cm3) and a highly textured structure (BET specific surface area, 943 m2/g; total pore volume, 0.56 cm3/g). The immersion in BS syrup was useful for improving the texture without reducing the bulk density, in comparison to one-step activation for 1.0 h. The suspension of the RBCs was basic because of the residual inorganic compounds of potassium and calcium. However, the basicity of the suspension was alleviated by washing the RBCs with water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号