首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bi4Ti3O12在低压氧化锌压敏电阻器的烧结过程中起着重要作用。通过使用扫描电子显微镜(SEM)研究了添加Bi4Ti3O12粉体的陶瓷烧结过程。结果表明,使用纳米Bi4Ti3O12粉体的压敏电阻所获得的电压梯度更低,Zn2TiO4相的形态和分布影响压敏电压的分散性。  相似文献   

2.
采用普通陶瓷工艺制备了Zn2SiO4掺杂的氧化锌压敏电阻,研究了Zn2SiO4掺杂量对氧化锌压敏电阻的致密度,晶粒微观结构,小电流性能和通流能力的影响.结果表明:当Zn2SiO4掺杂量达到0.75%(摩尔分数)时,氧化锌压敏电阻晶粒致密均匀;电学性能得到改善,压敏电压梯度和非线性系数分别高达438 V/mm和85,漏电...  相似文献   

3.
GaAs-polymer composite varistors were prepared by hot pressing at a pressure of 60 MPa and different temperatures and their current–voltage characteristics were investigated. The results show that these varistors can be used to protect circuits from 46 V up to 54 V over voltages. In addition, it is found that the varistor breakdown voltage and its nonlinearity as well as its impurity band gap increase by increasing sintering temperature while the corresponding barrier height decreases. Each sample has hysteresis which decreases through the increase in sintering temperature. This causes the varistors to have longer lifetime due to their low degradation. Finally, the analysis of composite samples by scanning electron microscopy is presented and discussed.  相似文献   

4.
轧膜成型 Zn O-玻璃系压敏电阻器的烧结温度、厚度、掺杂 Pb O等因素对电性能有一定影响。调整烧结温度和厚度可控制压敏电压。掺入 Pb O可降低烧结温度并改善材料的电性能  相似文献   

5.
Tungsten oxide nanostructures functionalized with gold or platinum NPs are synthesized and integrated, using a single‐step method via aerosol‐assisted chemical vapour deposition, onto micro‐electromechanical system (MEMS)‐based gas‐sensor platforms. This co‐deposition method is demonstrated to be an effective route to incorporate metal nanoparticles (NP) or combinations of metal NPs into nanostructured materials, resulting in an attractive way of tuning functionality in metal oxides (MOX). The results show variations in electronic and sensing properties of tungsten oxide according to the metal NPs introduced, which are used to discriminate effectively analytes (C2H5OH, H2, and CO) that are present in proton‐exchange fuel cells. Improved sensing characteristics, in particular to H2, are observed at 250 °C with Pt‐functionalized tungsten oxide films, whereas non‐functionalized tungsten oxide films show responses to low concentrations of CO at low temperatures. Differences in the sensing characteristics of these films are attributed to the different reactivities of metal NPs (Au and Pt), and to the degree of electronic interaction at the MOX/metal NP interface. The method presented in this work has advantages over other methods of integrating nanomaterials and devices, of having fewer processing steps, relatively low processing temperature, and no requirement for substrate pre‐treatment.  相似文献   

6.
Metal foams are highly sought‐after porous structures for heterogeneous catalysis, which are fabricated by templating, injecting gas, or admixing blowing agents into a metallic melt at high temperatures. They also require additional catalytic material coating. Here, a low‐melting‐point liquid metal is devised for the single‐step formation of catalytic foams in mild aqueous environments. A hybrid catalytic foam fabrication process is presented via simultaneous chemical foaming, melting, and sintering reaction of liquid metal nanoparticles. As a model, nanoparticles of tertiary low‐melting‐point eutectic alloy of indium, bismuth, and tin (Field's metal) are processed with sodium hydrogen carbonate, an environmentally benign blowing agent. The competing endothermic foaming and exothermic sintering reactions are triggered by an aqueous acidic bath. The overall foaming process occurs at a localized temperature above 200 °C, producing submicron‐ to micron‐sized open‐cell pore foams with conductive cores and semiconducting surface decorations. The catalytic properties of the metal foams are explored for a range of applications including photo‐electrocatalysis, bacteria electrofiltration, and CO2 electroconversion. In particular, the Field's metal‐based foams show exceptional CO2 electrochemical conversion performance at low applied voltages. The facile process presented here can be extended to other low‐temperature post transition and transition metal alloys.  相似文献   

7.
In this work we demonstrate the nanopatterning of nanocomposites made by luminescent zinc oxide nanoparticles and light‐emitting conjugated polymers by means of soft molding lithography. Vertical nanofluidics is exploited to overcome the polymer transport difficulties intrinsic in materials incorporating nanocrystals, and the rheology, fluorescence, absolute quantum yield, and emission directionality of the nanostructured composites are investigated. We study the effect of patterned gratings on the directionality of light emitted from the nanocomposites, finding evidence of the enhancement of forward emitted light, due to the printed wavelength‐scale periodicity. These results open new possibilities for the realization of nanopatterned devices based on hybrid organic‐inorganic systems.  相似文献   

8.
GaAs-polymer composite varistors are prepared using hot pressing method at a temperature of 130 °C and different pressures and their current–voltage characteristics are investigated. The results show that these varistors can be used to protect circuits from 35 V up to 52 V over voltages. In addition, it is found that the varistor breakdown voltage and its nonlinearity as well as its impurity band gap increase by increasing sintering pressure while the corresponding barrier height decreases. Each sample has hysteresis which increases through the increase in sintering pressure. This causes the varistors to have lower lifetime due to their high degradation. These results are both investigated and analyzed using SEM micrographs.  相似文献   

9.
高电压梯度的ZnO变阻器   总被引:6,自引:2,他引:4  
通过超细粉碎和低温烧结工艺.制造成了具有高电压梯度的ZnO变阻器.本文简要报告高电压梯度的ZnO变阻器的制造工艺和性能.  相似文献   

10.
集成电路过压保护用ZnO压敏电阻的研制   总被引:2,自引:0,他引:2  
为获得集成电路过电压保护用低压压敏电阻,以中压ZnO压敏电阻的配方为基础,通过研究与实验,确定了采用添加晶粒助长剂TiO2和籽晶、晶界稳定剂硼银玻璃和Ta2O5,低温烧结等途径,研制出了低压ZnO压敏电阻。测试结果表明,该ZnO压敏电阻的压敏电压为15~25V,漏电流小(<2μA),非线性特性好(α>29)。  相似文献   

11.
添加尖晶石对氧化锌压敏电阻性能的影响   总被引:1,自引:0,他引:1  
通过添加尖晶石(Zn7Sb2O(12))改性研制出电位梯度为100V/mm左右,压敏电压在82~150V,通流容量可达1600A/cm2,漏电流<2μA系列压敏电阻器,从而满足了国内电话交换机行业对82V、100V、120V、150V压敏电阻器的电性能要求。从工艺的角度解释了尖晶石对氧化锌瓷晶粒的作用原理,并分析了尖晶石的微观结构及粒度对瓷片电性能的影响。  相似文献   

12.
This paper reviews the history of ZnO varistor,discribes its properties and recenttechnological status and forecasts its evolution.The future development trend is to produce the low-voltage high-energy multi-layer ZnO varistors.After the two additives are classified by their functions,the effect mechanism of Bi_2O_3 and TiO_2 additives are researched theoretically.TiO_2 will make ZnO graingrow bigger and V_ImA/mm be depressed down.Especially the colloid TiO_2 additive in the scale ofnanometer brings about a new method to realize the low voltage of ZnO varistor,which resolves theproblem of how to disturb nanometer powder evenly.Moreover the sintering temperature has prominenteffect on the electrical properties of ZnO varistors.Generally,the appropriate sintering temperature forlow-voltage ZnO varistor ceramics should not be more than 1 250℃.These provide an effective methodand rationale for studying low-voltage ZnO varistors.  相似文献   

13.
This paper reviews the history of ZnO varistor, discribes its properties and recent technological status and forecasts its evolution. The future development trend is to produce the low-voltage high-energy multi-layer ZnO varistors. After the two additives are classified by their functions, the effect mechanism of Bi2O3 and TiO2 additives are researched theoretically. TiO2 will make ZnO grain grow bigger and V1mA/mm be depressed down. Especially the colloid TiO2 additive in the scale of nanometer brings about a new method to realize the low voltage of ZnO varistor, which resolves the problem of how to disturb nanometer powder evenly. Moreover the sintering temperature has prominent effect on the electrical properties of ZnO varistors. Generally, the appropriate sintering temperature for low-voltage ZnO varistor ceramics should not be more than 1 250℃. These provide an effective method and rationale for studying low-voltage ZnO varistors.  相似文献   

14.
Bioresorbable electronic devices are promising replacements for conventional build‐to‐last electronics in implantable biomedical systems and consumer electronics. However, bioresorbable devices are typically achieved by complex complementary metal oxide semiconductor fabrication processes that minimize exposure to humidity. Emerging printable techniques for bioresorbable electronics demand further improvement in electrical conductivity and mechanical robustness. This paper presents a room‐temperature spontaneous sintering method of bioresorbable inks that contain zinc nanoparticles and anhydride. The entire process can be conducted in atmosphere environment under 90% humidity within 300 min. It has minimum requirement for external heating and special ambient conditions, allowing humidity to trigger the surface chemistry of zinc nanoparticles and spontaneous welding between neighboring nanoparticles. The resulting bioresorbable patterns are highly conductive (σ = 72 400 S m?1) and mechanically robust (>1500 bending cycles) to enable practical applications. A radio circuit achieved through the above method can operate stably over 14 days in air and disappear in water for less than 30 min. The spontaneous room‐temperature sintering represents a rapid and energy‐efficient approach to achieve high‐performance bioresorbable electronics with improved mechanical robustness and electrical performance, leading to broader impacts in the areas of healthcare, information security, and consumer electronics.  相似文献   

15.
Electrically conducting nanocomposites of bismuth metal and insulating ceramic phases of SiO2 and MgO were generated via high‐energy ball milling for 24 h using zirconia milling media. The resulting nanocomposites contain Bi nanoparticles with sizes down to 5 nm in diameter. The morphology is a strong function of the oxide phase: specifically, the Bi appears to wet MgO while it forms spherical nanoparticles on the SiO2. X‐ray diffraction measurements indicate a nominal bismuth grain size of 50 nm, and peak fitting to a simple bidisperse model yields a mixture of approximately 57 % bulk bismuth and 43 % 27 nm diameter crystallites. Nanoparticles as small as 5 nm are observed in transmission electron microscopy (TEM), but may not constitute a significant volume fraction of the sample. Differential scanning calorimetry reveals dramatic broadening in the temperatures over which melting and freezing occur and a surprising persistence of nanostructure after thermal cycling above the melting point of the Bi phase.  相似文献   

16.
17.
高能球磨法制备高电位梯度的ZnO压敏电阻   总被引:1,自引:1,他引:0  
为了制备高电位梯度的ZnO压敏电阻,采用了新的粉体制备方法,即高能球磨Bi2O3和Sb2O3两种添加剂12 h,再与其它氧化物共同高能球磨5h。扫描电镜及各个烧结温度下电性能、致密度的实验结果证明:此法制备的粉体压片后,1000℃烧结时,其电位梯度高达1516V/mm,漏电流为3.0μA,非线性系数为22。  相似文献   

18.
A novel step‐wise approach for fabrication of periodic arrays of two different types of nanoparticles (NPs), selectively localized at different block copolymer phases is demonstrated. In the first step, pre‐synthesized ≈12 nm silver nanoparticles (AgNPs), stabilized with thiol‐terminated polystyrene, are mixed with poly(styrene‐block‐vinylpyridine) (PS‐b‐PVP) block copolymer in a common solvent. After film casting and consequent solvent vapor annealing the AgNPs are selectively localized within the PS phase of the block copolymer matrix due to the interaction with PS shell of the nanoparticles. In the second step, ≈2–5 nm gold, platinum, or palladium nanoparticles are directly deposited from their aqueous dispersion on the PVP domains of the self‐assembled block copolymer thin films. In such a way, thin films of nanostructured block copolymer with two types of nanoparticles, separated by the two distinct block copolymer phases, are prepared in a step‐wise manner. The presented method is very simple and can be applied for various combinations of pre‐synthesized nanoparticles where the characteristics of either type of nanoparticles are tuned accordingly in advance, which is more difficult to achieve for in situ synthesized nanoparticles.  相似文献   

19.
Ball milling with subsequent spark plasma sintering (SPS) was used to fabricate bulk nanothermoelectrics based on Bi x Sb2?x Te3. The SPS technique enables reduced size of grains in comparison with the hot-pressing method. The electrical and thermal conductivities, Seebeck coefficient, and thermoelectric figure of merit as functions of temperature and alloy composition were measured for different sintering temperatures. The greatest value of the figure of merit ZT = 1.25 was reached at the temperature of 90°C to 100°C in Bi0.4Sb1.6Te3 for sintering temperature of 450°C to 500°C. The volume and quantitative distributions of size of coherent dispersion areas (CDA) were calculated for different sintering temperatures. The phonon thermal conductivity of nanostructured Bi x Sb2?x Te3 was investigated theoretically taking into account phonon scattering on grain boundaries and nanoprecipitates.  相似文献   

20.
Multidimensional hierarchical architecturing is a promising chemical approach to provide unique characteristics synergistically integrated from individual nanostructured materials for energy storage applications. Herein, hierarchical complex hybrid architectures of CNT‐on‐OCNT‐Fe are reported, where iron oxide nanoparticles are encapsulated inside carbon nanotube (CNT) branches grown onto the ozone‐treated surface of 3D CNT internetworked porous structures. The activated surface of the 3D ozonated CNT (OCNT) interacts with the iron oxide nanoparticles, resulting in different chemical environments of inner and outer tubes and large surface area. The mixed phases of iron oxide nanoparticles are confined by full encapsulation inside the conductive nanotubes and act as catalysts to vertically grow the CNT branches. This unique hierarchical architecture allows CNT‐on‐OCNT‐Fe to achieve a reasonable capacity of >798 mA h g?1 at 50 mA g?1, with outstanding rate capability (≈72% capacity retention at rates from 50 to 1000 mA g?1) and cyclic stability (>98.3% capacity retention up to 200 cycles at 100 mA g?1 with a coulombic efficiency of >97%). The improved rate and cyclic capabilities are attributed to the hierarchical porosity of 3D OCNT internetworks, the shielding of CNT walls for encapsulated iron oxide nanoparticles, and a proximate electronic pathway for the isolated nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号