首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyaniline (PANI)/reduced graphene oxide (rGO) composites were synthesized by in situ oxidative polymerization of aniline on reduced graphene sheets. Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetric analysis, transmission electron microscopy, and scanning electron microscopy were used to characterize the composites. The results indicated PANI/rGO composites were produced and contained covalent bonds between the functional groups of PANI and rGO. A uniform coating of PANI on the rGO sheets had a synergistic effect on the properties of the composites. The electrochemical properties of the PANI/rGO composites produced using different feed ratios of aniline to rGO were studied. The results showed that the composites exhibited a maximum specific capacitance of 797.5 F/g at 0.5 A/g and minimum charge transfer resistance of 0.98 Ω when the feed ratio of aniline to rGO was 2:1. These values were superior to those of pure PANI and rGO. The composites also displayed excellent cycling stability, with specific capacitance retention of 92.43% after 1000 cycles. These stable structural composites show promise for the development of new supercapacitor applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46103.  相似文献   

2.
The reduced graphene oxide/nonwoven fabric (rGO/NWF) composites have been fabricated through heating the NWF coated with the mixture of GO and HONH2·HCl at 130°C, during which the GO is chemically reduced to rGO. Then the composites of polypyrrole (PPy)/rGO/NWF have been prepared through chemically polymerizing pyrrole vapor by using the FeCl3·6H2O adsorbed on rGO/NWF substrate as oxidant. Finally, multiwalled carbon nanotubes (MWCNTs) are used as conductive enhancer to modify PPy/rGO/NWF through dip‐dry process to obtain MWCNTs/PPy/rGO/NWF. The prepared composites have been characterized and their capacitive properties have been evaluated in 1.0M KCl electrolyte by using two‐electrode symmetric capacitor test. The results reveal that MWCNTs/PPy/rGO/NWF possesses a maximum specific capacitance (Csc) of about 319 F g?1 while PPy/rGO/NWF has a Csc of about 277.8 F g?1 at the scan rate of 1 mV s?1 and that optimum MWCNTs/PPy/rGO/NWF retains 94.5% of initial Csc after 1000 cycles at scan rate of 80 mV s?1 which is higher than PPy/rGO/NWF (83.4%). Further analysis reveals that the addition of MWCNTs can increase the charger accumulation at the outer and inner of the composites, which is favorable to improve the stability and the rapid charge‐discharge capacity. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41023.  相似文献   

3.
A water soluble ionomer with natrium propanesulfonate groups was prepared based on a linear polyurethane with high content of ? NHCOO? structures. This compound was used both as macromolecular electrolyte and dopant ion in electrochemical polymerization of pyrrole, obtaining a molecular level polypyrrole-propanesulfonate polyurethane composite with electroconductive properties. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
The synthesis of polyaniline/platinum composites (PANI/Pt) has been achieved using both chemical and electrochemical methods. The direct chemical synthesis of PANI/Pt proceeds through the oxidation of aniline by PtCl62− in the absence of a secondary oxidant. SEM images of these samples indicate that the Pt particles are on the order of ∼1 μm for the chemically prepared composite. Electrochemical PANI/Pt synthesis is initiated by the uptake and reduction of PtCl62− into an a priori electrochemically deposited PANI film. This method produces a uniform dispersion of Pt particles with smaller particles with diameters ranging between 200 nm and 1 μm. The results indicate that electrochemical methods may be more suitable for controlling particle dimension. Both materials show reduced proton doping relative to PANI without Pt, indicating the metal particles directly influence proton doping and the oxidation state of the polymer. The electrochemical data indicate that the conductivity in solution is sufficient such that the normal acid doping is attainable for PANI/Pt produced using either synthetic method.  相似文献   

5.
Polyaniline (PANI) is one of the most common polymers known for its conducting properties. However, poor water solubility limits its applications. In this work, PANI has been functionalized with sulfonic acid groups to produce sulfonated PANI (SPANI) offering excellent solubility in water. To compensate for the decrease of electrical conductivity due to functionalization, SPANI was combined with reduced graphene oxide (RGO) to form SPANI/RGO composites with interesting optical, thermal, and electrical properties. The composites have been characterized using X‐ray diffraction (XRD), field emission scanning electron microscopy, UV–vis absorption spectroscopy, Raman spectroscopy, Fourier‐transform infrared spectroscopy, X‐ray photoelectron spectroscopy, thermogravimetric analysis, cyclic voltammetry, and four probe electrical conductivity measurement. The SPANI/RGO composites show increased thermal stability, reduced optical band gap and improved electrochemical properties compared with the pure polymer. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42766.  相似文献   

6.
We report on the exceptional application of polyaniline/graphene composites (PAGCs) for corrosion protection of steel. The composites display outstanding barrier properties against O2 and H2O compared with neat polyaniline and polyaniline/clay composites (PACCs). The conductive filler, 4-aminobenzoyl group-functionalized graphene-like sheets (ABF-G) with a relatively higher aspect ratio than organophilic clay nonconductive fillers, is a versatile platform for polymer grafting that promotes better dispersion of the graphite within the polymer matrix and lengthens the diffusion pathway that gases should effectively encounter. This concept can be used for other polymer/graphene composites.  相似文献   

7.
本文采用改性Hummers法制备氧化石墨烯,热还原得到石墨烯,采用双乳液方法制备石墨烯/聚苯胺复合材料,利用傅里叶变换红外(FTIR)光谱、XRD衍射仪、XPS光电子能谱,SEM、TEM对石墨烯及石墨烯聚苯胺复合材料进行了结构和形貌表征。结果表明热还原得到的石墨烯具有良好的透光率,呈现均匀的皱褶层状结构,具有良好的片层结构。石墨烯与聚苯胺之间发生了化学键合,XPS显示聚苯胺掺杂度不高,但加入石墨烯后电导率明显增加,石墨烯与聚苯胺之间发生了协同作用。CV曲线表明双乳液制备的聚苯胺/石墨烯复合材料电容有所下降。  相似文献   

8.
The sulfonation of graphene by coupling with the diazonium salts of sulfanilic (SA) acid and amino-4-hydroxy-2-naphthalenesulfonic (NSA) acid is studied. Coupling with the diazonium salt of NSA gives the highest degree of sulfonation. Composites of polyaniline (PANI) and sulfonated graphene (SG) are prepared by the polymerization of aniline in the presence of the SG. The materials have been characterized by Raman, Fourier transformed infrared spectroscopy, thermogravimetric analysis and cyclic voltammetry. These materials are electrochemically active at pHs close to physiological pH due to the doping of PANI with the sulfonic groups in SG trapped in the polymer. Furthermore, good conductivity values are obtained.  相似文献   

9.
《应用化工》2022,(1):104-108
采用一步水热合成法,以Al(NO3)3为铝源,P123为模板剂,Na OH、Na2CO3和K2CO3分别为沉淀剂,Cu(NO3)2为铜源,制备出负载铜的金属有序介孔γ-Al2O3,并运用N2吸附-脱附和XRD等技术对其结构进行表征,同时探讨了铜改性的介孔γ-Al2O3对模型燃油中的噻吩的吸附性能。结果表明,这3种沉淀剂都能制备出比表面积大(>226 m2/g),孔径分布中心为3.3 nm,孔体积为0.270.35 cm3/g的负载铜的介孔γ-Al2O3,且样品都保持了较好的介孔结构。样品对模型燃油中噻吩的吸附脱硫性能表明,用Na OH作为沉淀剂且负载铜的介孔γ-Al2O3样品对噻吩的吸附性能较好,原因在于此样品具有较大的比表面积且铜在此样品中的分散性较好。  相似文献   

10.
刘淑玲  任静 《应用化工》2019,(1):104-108
分别采用物理球磨混合法、化学原位聚合法和化学原位聚合-还原法制备了聚吡咯/氧化石墨烯混合物、聚吡咯/氧化石墨烯(PPy/GO)和聚吡咯/还原氧化石墨烯(PPy/RGO)复合材料。通过三电极测试其电化学性能(循环伏安、恒流充放电和交流阻抗)。结果表明,通过化学原位聚合法制备的PPy/GO(304. 5 F/g)比电容远高于物理混合(16 F/g)和聚吡咯/还原氧化石墨烯(126. 4 F/g)。化学法原位聚合法制备PPy/GO最佳条件是冰浴条件下和加入表面活性剂对羟基苯磺酸钠。并通过X射线衍射(XRD)和扫描电子显微镜(SEM)对化学原位制备的PPy/GO组成、结构和形貌进行了表征。  相似文献   

11.
王珏  于平  付东  张晓臣  张伟君  阚侃 《精细化工》2020,37(2):257-263,289
以氧化石墨烯和Sn Cl2为原料,通过微波水热法合成了石墨烯/SnO_2复合材料(GS),以过硫酸铵为引发剂,通过吡咯在Si粉表面原位氧化聚合制备了Si@PPy(SP)包覆结构,最后通过微波水热组装法制备了石墨烯/SnO_2/Si@PPy复合材料(GSSP)。采用SEM、TEM、XRD、Raman和BET对GS、SP和GSSP材料的形貌和结构进行表征,并以GSSP复合材料为负极组装半电池进行倍率、循环、CV和EIS等电化学性能测试。结果表明,GSSP复合材料具有优异的倍率性能,在100 mA/g电流密度下,放电和充电的平均比容量分别为948.44和869.63 mA·h/g。1000 mA/g电流密度下,经过400次循环放电和充电的比容量保持率高达90.69%和89.34%。  相似文献   

12.
The graphene cathode was doped with boron via a new and fast method of plasma enhanced chemical vapor deposition (PECVD) at room temperature. Various plasma species of BHx (x?=?0–3) with high reactivity reacted with graphene electrode via surface re-reactions and gas-interface intersection. The cathode made of boron doping into graphene (BG) exhibited excellent electrochemical performances in Li-ion capacitors, including a large discharge capacity of 140?mAh?g?1 (voltage range: 1.5–4.2?V vs. Li/Li+, current density: 100?mA?g?1) and the coulombic efficiency of more than 99.6% within 1000 circles. The capacity, coulombic efficiency and circle performance of the BG electrode were more superior to the undoped graphene electrode owing to the uniform doping of boron plasma species. The PECVD method has the advantages of being simple, is conducted at room-temperature, is time efficient and uniform, thus making it a fast and effective way for doping hetero-atoms into the electrode.  相似文献   

13.
A film composed of graphene (GN) sheets, polyaniline (PANI) and carbon nanotubes (CNTs) has been fabricated by reducing a graphite oxide (GO)/PANI/CNT precursor prepared by flow-directed assembly from a complex dispersion of GO and PANI/CNT, followed by reoxidation and redoping of the reduced PANI in the composite to restore the conducting PANI structure. Scanning electron microscope images indicate that the ternary composite film is a layered structure with coaxial PANI/CNT nanocables uniformly sandwiched between the GN sheets. Such novel hierarchical structure with high electrical conductivity perfectly facilitates contact between electrolyte ions and PANI for faradaic energy storage and efficiently utilizes the double-layer capacitance at the electrode–electrolyte interfaces. The specific capacitance of the GN/PANI/CNT estimated by galvanostatic charge/discharge measurement is 569 F g−1 (or 188 F cm−3 for volumetric capacitance) at a current density of 0.1 A g−1. In addition, the GN/PANI/CNT exhibits good rate capability (60% capacity retention at 10 A g−1) and superior cycling stability (4% fade after 5000 continuous charge/discharge cycles).  相似文献   

14.
以苯胺、聚丙烯接枝磺化苯乙烯、氧化石墨烯为反应原料,以盐酸为掺杂剂,通过苯胺原位聚合及大分子反应制备了氧化石墨烯/聚丙烯接枝磺化苯乙烯/聚苯胺(GO/PP-g-SPS/PANI)层状结构的复合材料。研究了复合材料的体积电阻率及反应物配比对复合材料体积电阻的影响。分别采用FTIR、XPS对复合材料进行了结构分析,并采用SEM对复合材料结构形貌进行了表征,同时研究了将其添加到PP中的抗静电性能。研究结果表明: GO/PP-g-SPS/PANI制备最佳配比为质量比mPP-g-SPSmGOmANI=30∶15∶1时,材料体积电阻率最小为120Ω·mm。添加到PP中导电逾渗阈值为0.7%(质量分数),PP材料的体积电阻率达到最低值4.5×1010Ω·mm,比纯PP降低了6个数量级,拉伸强度提高了2.8MPa。SEM形貌图表明GO/PP-g-SPS/PANI以GO为骨架表面层状蜂窝结构,聚合物大分子镶嵌在GO片层间,与PP共混物界面具有良好的相容性。  相似文献   

15.
张燕  王淼  赵佳辉  冯宇  米杰 《化工进展》2022,41(10):5501-5509
碳基复合材料被认为是超级电容器广泛应用最有前景的电极材料之一。本文使用氧化石墨烯(GO)、硝酸钴[Co(NO3)2]、三聚氰胺为原料,利用钴对高温下热解碳源的催化作用,制备得到了氮掺杂石墨烯/碳纳米管/无定形炭(NC)复合材料,并测试了其电化学性能。探究了金属和三聚氰胺添加量对碳基复合材料结构和性能的影响,研究发现,在添加量分别为0.02mmol和0.3g时,制得的样品具有大比表面积(380.5m2/g)和高掺氮质量分数(6.29%),并在三电极系统中体现出优异的电化学性能,电流密度为0.5A/g时样品的比电容为137.1F/g,5A/g时比电容为113.5F/g,保持率为88.5%,具有优异的倍率性能,在循环5000圈后样品的容量保持率为104%,具有良好的循环稳定性,这归因于三维结构可以加快充放电过程中的离子转移和氮掺杂可提高材料润湿性和贡献部分赝电容,为超级电容器电极材料的制备提供了理论借鉴。  相似文献   

16.
Jiongxin Lu  Byung-Kook Kim 《Polymer》2007,48(6):1510-1516
Polyaniline (PANI)/epoxy composites with different polyaniline (PANI) contents were successfully developed by in situ polymerization of aniline salt protonated with camphorsulfonic acid within epoxy matrices and fully characterized. The influence of PANI loading levels on various properties was also explored. Dielectric and electrical properties of PANI/epoxy composites were studied for samples in parallel plate configuration. A PANI/epoxy composite prepared in this fashion reached a high dielectric constant close to 3000, a dielectric loss tangent less than 0.5 at room temperature and 10 kHz. The hardener type was also found as a critical parameter for the dielectric properties of PANI/epoxy composites. The distribution of the conductive element clusters within the polymer matrix was studied by SEM and correlated to the dielectric behavior of the composite films.  相似文献   

17.
A novel DNA biosensor based on oxidized graphene and polyaniline nanowires (PANIws) modified glassy carbon electrode was developed. The resulting graphene/PANIw layers exhibited good DPV current response for the complementary DNA sequences. The good electron transfer activity might be attributed to the effect of graphene and PANIw. Graphene and PANIw nanolayers film with highly conductive and biocompatible nanostructure were characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The immobilization of the probe DNA on the surface of electrode was largely improved due to the unique synergetic effect of graphene and PANIw. Under optimum conditions, the biosensor exhibited a fast amperometric response, high sensitivity and good storage stability for monitoring DNA. The current response of the sensor increases linearly with the concentration of target from 2.12 × 10−6 to 2.12 × 10−12 mol l−1 with a relative coefficient of 0.9938. The detection limit (3σ) is 3.25 × 10−13 mol l−1. The results indicate that this modified electrode has potential application in sensitive and selective DNA detection.  相似文献   

18.
Optimizing the synthesis parameters of polyaniline/graphite nanoplate (PANI/GNP) composite is essential to the final electrochemical performance. Herein, the electrochemical properties of PANI/GNP composites, prepared by in situ chemical polymerization using varying amounts of different oxidants, with or without the addition of 4‐dodecylbenzenesulfonic acid (DBSA) as dopant, were investigated. Cyclic voltammetric results suggested that a stoichiometric amount of the oxidant iron chloride (FeCl3) was beneficial to the electrochemical properties of the composites. The use of ammonium persulfate (APS) instead of FeCl3 as oxidant largely increased the actual PANI content, conductivity and specific capacitance of the PANI/GNP composites. The dopant DBSA increased the conductivity of the PANI/GNP composites but did not show a positive effect on the electrochemical behavior. The cyclic voltammograms of the PANI/GNP composites indicated that the pseudocapacitance of PANI contributes more than the electrical double‐layer capacitance of GNP to the capacitance of the composites, while the presence of GNP plays an essential role in the rate capability of the composites. In this study, PANI/GNP (1:1) composite synthesized with an APS to aniline molar ratio of 1 showed a balanced combination of high specific capacitance (180.5 F g?1 at 20 mV s?1) and good rate capability (78% retention at 100 mV s?1). © 2018 Society of Chemical Industry  相似文献   

19.
A novel electrochemical sensor based on Ag nanoparticles (AgNPs) decorated polyaniline/graphene composites (PANI/G) is developed, which can be used for sensitive determination of H2O2. For the construction of the H2O2 sensor, polyaniline (PANI) is first electrodeposited on the surface of graphene (G) to form PANI/G, and then horseradish peroxidase (HRP) loaded on AgNPs (HRP/AgNPs) is immobilized on to the PANI/G. H2O2 can be catalyzed by HRP to generate current response which can be significantly enhanced by AgNPs, and thus the PANI/G based sensor can be utilized for the detection of H2O2. Under the optimized conditions, the proposed H2O2 sensor exhibits wide linear response to H2O2 concentration ranging from 0.25 to 2.25 mM with a detection limit of 0.03 mM (signal‐to‐noise ratio of 3), and it also shows high selectivity and reproducibility. The method is simple and cost‐effective, and can be a promising candidate as the sensitive sensing platform for H2O2. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42409.  相似文献   

20.
A simple route to achieve covalently-grafted polyaniline (PANI)/graphene oxide (GO) nanocomposites has been developed. The synthesized composites showed a uniform hierarchical morphology of the PANI thin film and short rod-like nanostructures that had densely grown on the GO sheets, in contrast to the nonuniform morphology of noncovalently-grafted PANI/GO. Compared to pure PANI and noncovalently-grafted PANI/GO composites, the covalently-grafted PANI/GO composites possessed a much larger specific surface area and pore volume, which increased the accessible surface area for the redox reaction and allowed faster ion diffusion. This unique hierarchical morphology maximized the synergistic effect between PANI and GO, resulting in excellent electrochemical performance (capacitance 442 F/g of PANI/GO (6:1) vs. 226 F/g of pure PANI) and improved cycling stability (83% @ 2000 cycles of PANI/GO (6:1) vs. 54.3% @ 1000 cycles of pure PANI). The enhanced electrochemical performance demonstrates the advantage of the PANI/GO composites prepared via this covalent grafting method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号