首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The “in situ” preparation and characterization of composites of polyaniline (PANI) and single-walled carbon nanotubes (SWCNTs) are reported. To improve the dispersion and compatibility with the polymer matrix the raw SWCNTs were modified following different routes. SWCNTs oxidized by chemical or thermal treatments (nitric acid and air oxidation, respectively) were subjected to covalent functionalization with octadecylamine (ODA). SWCNT/PANI composites were prepared either from just oxidized SWCNTs, or from ODA functionalized SWCNTs. Temperature-programmed desorption, elemental analyses, ultraviolet-visible (UV-vis), UV-vis with near infrared and Raman spectroscopy, X-ray diffraction, scanning and transmission electron microscopy and conductivity measurements were used to characterize the functionalized SWCNT materials, dispersions and composites. The PANI composite prepared from air oxidized SWCNTs showed the best electrical conductivity indicating a better interaction with polyaniline than ODA functionalised SWCNTs. The improvement of conductivity is attributed to the doping effect or charge transfer of quinoide rings from PANI to SWCNTs.  相似文献   

2.
The transition metal copper (II) ion (Cu2+) was effectively coordinated with a single-walled carbon nanotube (SWCNT) to produce a SWCNT–Cu2+ complex by a metal coordination reaction. Since the complex was very reactive towards the carboxylic acid group, the chemical functionalization of SWCNTs was easy to accomplish. This approach was used to functionalize the surface of the SWCNTs with stearic acid or ethylenediaminetetraacetic acid for tuning of the relative hydrophobicity and hydrophilicity of the surface, respectively. The mild reaction conditions used for metal coordination of the SWCNTs minimized the defects that result from chemical modification of SWCNT. Thus, the electrical properties of unmodified SWCNTs were preserved. Various analytical techniques, including Fourier transform infrared spectroscopy, thermal gravimetric analysis, ultraviolet–visible spectroscopy, and water sorption isotherm measurements, were used to characterize the surface properties of the functionalized SWCNTs. Functionalization of SWCNTs by metal coordination reaction effectively modified the SWCNT surface, while conserving the excellent physical properties of the SWCNTs. The surface properties of the SWCNTs were easily tuned by introduction of the functional groups required for specific applications.  相似文献   

3.
The selective synthesis of SWCNTs with narrow chirality and diameter distribution by methane decomposition over a Co–MgO catalyst is reported. Raman spectroscopy, temperature programmed oxidation (TPO), UV–Vis–NIR absorption spectroscopy, and nitrogen physisorption were used to probe SWCNTs morphology, reaction selectivity, SWCNTs chirality and diameter distribution, and carbon yield. The catalyst was examined by nitrogen physisorption, X-ray diffraction (XRD), temperature programmed reduction (TPR), and UV–Vis-diffuse reflectance spectroscopy to elucidate the structure and chemical state of the species responsible for SWCNT growth. The results established a clear link between the degree of dispersion of Co species inside the MgO lattice and the catalyst activity and selectivity for SWCNT growth. High dispersion and stabilization of Co species influenced catalytic activity for methane decomposition and the high SWCNT selectivity. The yield of carbon and SWCNT selectivity increased with an increase in temperature, however, SWCNTs diameter distribution shifts to larger diameter tubes as synthesis temperature was increased.  相似文献   

4.
Electric arc single-walled carbon nanotubes (SWCNTs) can be separated from their graphitic impurities by a single centrifugation process in a surfactant or in polymer solutions. The purity of SWCNT dispersions, evaluated from near infrared (NIR) spectroscopy measurements, substantially increased after centrifugation at a moderate speed. The supernatant NIR purity was affected by the surfactant choice, following the sequence: sodium cholate ∼ Pluronic F68 > sodium dodecylbenzene sulfonate > Pluronic F127 > sodium dodecyl sulfate. NIR purity was also influenced by the centrifugation speed and the pristine SWCNT concentration in the starting dispersion, but not by the surfactant concentration. SWCNT enrichment was not observed in a pure organic solvent (N,N′-dimethylformamide) under identical centrifugation conditions. X-ray diffraction analysis demonstrated that graphitic impurities were mostly eliminated from SWCNTs during the centrifugation process in a surfactant or in polymer solutions. Thermogravimetric analysis under CO2 showed that metallic impurities were substantially reduced during the centrifugation process.  相似文献   

5.
Supramolecular surface modification of single-walled carbon nanotubes (SWCNTs) using an amphiphilic molecule containing a bent triptycene moiety and a hydrophilic oligo(ethylene glycol) chain is described. The surface modification was realized through the binding of the triptycene moiety onto the sidewall of SWCNTs through a π–π stacking interaction, and the oligo(ethylene glycol) chains extend into the water and act as dispersing agents, thus yielding an aqueous SWCNT dispersion. This dispersion is stable for more than six months and contains a high concentration of SWCNTs. The dispersion was characterized by absorption, fluorescence, and Raman spectroscopy. Based on shape-fitting of SWCNTs and the triptycene moiety, the stacking of triptycene moieties on the SWCNT sidewall shows a nice selectivity for SWCNTs with a diameter of 1.0 nm.  相似文献   

6.
Single‐walled carbon nanotube (SWCNT) polyvinylimidazole (PVI) composites have been prepared by in situ emulsion polymerization. Dispersion of raw SWCNTs in the PVI matrix was improved by surface modification of the SWCNTs using nitric acid treatment and air oxidation. The carbonyl‐terminated SWCNTs were covalently bonded to PVI by in situ polymerization and the SWCNT/PVI composite was thus obtained. The morphological and structural characterizations of the surface‐functionalized SWCNTs and SWCNT/PVI composites were carried out by Fourier transform infrared spectroscopy, X‐ray diffraction, conductivity measurements, scanning, and transmission electron microscopy. Thermograms of the materials were determined by the differential scanning calorimetry technique. The characterization results indicate that PVI was covalently bonded to SWCNTs and a new material was then obtained. The functionalized SWCNTs showed homogenous dispersion in the composites, whereas purified SWCNT resulted in poor dispersion and nanotube agglomeration. SWCNT/PVI composites exhibited chemical stability enhancement in many common solvents. I–V curves of the samples exhibit an ohmic character. Conductivity values for pure SWCNTs, pure PVI and SWCNT/PVI composite were measured to be 3.47, 2.11 × 10−9, and 2.3 × 10−3 S/m, respectively. Because of resonance, a large dielectric constant is obtained for SWCNT/PVI composite, which is not observed for ordinary materials. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

7.
Poly(methyl methacrylate) (PMMA) composites containing raw or purified single‐walled carbon nanotubes (SWCNTs) are prepared by in situ polymerization and solution processing. The SWCNTs are purified by centrifugation in a Pluronic surfactant, which consists of polyethyleneoxide and polypropyleneoxide blocks. Both the effects of SWCNT purity and non‐covalent functionalization with Pluronic are evaluated. Electrical conductivity of PMMA increases by 7 orders of magnitude upon the integration of raw or purified SWCNTs. The best electrical properties are measured for composites made of purified SWCNTs and prepared by in situ polymerization. Strains at fracture of the SWCNT/PMMA composites are nearly identical to those of the neat matrix. A certain decrease in the work to fracture is measured, particularly for composites containing purified SWCNTs (?31.6%). Fractography and Raman maps indicate that SWCNT dispersion in the PMMA matrix improves upon the direct addition of Pluronic, while dispersion becomes more difficult in the case of purified SWCNTs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41547.  相似文献   

8.
This study evaluates the effect of anionic and cationic surfactants on the dispersion of purified SWCNTs in water in terms of dispersibility and on electrical conductivity of TCFs and electronic band structures of SWCNTs. The dispersibility of surfactants in an aqueous SWCNT suspension is assessed with the amount of SWCNTs dispersed, the content of surfactants required to suspend SWCNTs, and the long-term stability of dispersion. Sodium dodecylbenzene sulfonate (SDBS) shows better dispersibility and electrical conductivity of SWCNTs than sodium dodecyl sulfate, sodium cholate, and cetyltrimethyl ammonium bromide. Electronic band structures of SWCNTs vary with surfactants and nitric acid treatment, investigated by using UV–Vis–NIR and Raman spectroscopy. Metallic and semiconducting SWCNTs and surfactants make electrostatic charge interactions between them, which occur in different manners according to the electronic types of tubes and the natures of surfactants. TCFs are fabricated by using the SWCNT suspension dispersed with SDBS, which reveal a low percolation threshold with the two dimensional percolation behavior. The highest ratio of dc to optical conductivity (σdc/σop) is observed to be ∼23.1, corresponding to sheet resistance of 69 Ω/sq at the 550-nm optical transmission of 80%, upon nitric acid treatment of the SWCNT films.  相似文献   

9.
Single-walled carbon nanotube (SWCNT) soot produced by arc discharge was purified through gas and liquid phase oxidations. In the gas-phase oxidation, zirconia beads with different diameters of 1, 5, and 10 mm were packed together with raw SWCNT soot inside a vertical quartz tube to enhance air flow uniformity and an exposed surface area of the raw soot during thermal oxidation in air. A decrease of the bead sizes led to such a stronger oxidation of carbonaceous impurities that ∼10 wt.% higher weight loss was then achieved with the 1 mm beads than without them. A subsequent HNO3 treatment and the second thermal oxidation were engaged to improve further the purity of SWCNTs. Thermogravimetric (TG) analysis, scanning electron microscopy, high resolution transmission electron microscopy, and Raman spectroscopy were used to characterize the samples. The derivative TG (DTG) curves were deconvoluted to quantitatively determine the SWCNT purity of the samples. Our final purified samples showed a yield of ∼26%, a metal impurity of ∼7% and a SWCNT purity of ∼83% as calculated from the deconvoluted DTG curves.  相似文献   

10.
A series of MgO-supported FeCu catalysts with different metal concentrations has been studied for synthesizing single-walled carbon nanotubes (SWCNTs). Spectroscopic characterization results have revealed that the concentrations of Fe and Cu are crucial for the purity of the produced SWCNTs, but have little effect on the SWCNT chirality distributions. The synergistic mechanisms of Fe and Cu in the catalysts were discussed and used for interpreting the growth results. Guided by the roles of Cu, an MgO-supported CoCu catalyst was also developed for low temperature growth of small diameter SWCNTs. All the results indicate that the Cu phase inhibits the sintering of the reduced metal particles and the active Fe or Co nanoparticles determine the chirality distribution of the SWCNTs.  相似文献   

11.
The effects of catalyst particle size on the purity, yield, and purification efficiency of single wall carbon nanotubes (SWCNTs) synthesized via pulsed laser vaporization were investigated. The purity of as-produced SWCNT material synthesized using Ni and Co nanometal (∼13 nm diameter) catalyst particles was compared to material synthesized using conventional micronmetal (2-3 μm diameter) particles. The SWCNT material from nanometal catalysts demonstrated a 50% increase in SWCNT purity as assessed by optical absorption spectroscopy and thermogravimetric analysis (TGA). A change in the thermal oxidation properties was also observed with the nanometal-SWCNTs exhibiting a suppression of the exothermic oxidation of post-synthesis catalyst. Statistical analysis of the TGA residue yielded mean post-synthesis catalyst particle diameters of 18 ± 6 nm and 3 ± 1 nm for the micronmetal and nanometal produced material, respectively. When a thermal oxidation profile was performed, the micronmetal-produced material showed the typical decrease in SWCNT purity with increasing oxidation temperature while the nanometal-produced material showed increasing SWCNT purity with increasing temperature. Overall, the use of nanometal catalysts significantly increases synthesis yield and offers novel thermal oxidation procedures to thermally remove carbonaceous impurities without the aid of acid treatments for the development of potential large-scale purification processing.  相似文献   

12.
The selective synthesis of single-walled carbon nanotubes (SWCNTs) with narrow chirality and diameter distribution by methane decomposition over Fe–MgO catalyst is reported. The catalyst was examined by nitrogen physisorption, X-ray diffraction, temperature programmed reduction, X-ray photoelectron spectroscopy, and UV–Vis diffuse reflectance spectroscopy to elucidate the structure and chemical state of the species responsible for SWCNT growth. High resolution electron microscopy, Raman and optical absorption spectroscopy, temperature programmed oxidation, energy dispersive X-ray spectroscopy and nitrogen physisorption were used to probe reaction selectivity, SWCNT chirality and diameter distribution, carbon yield and effectiveness of purification protocols. The yield of carbon increased with an increase in temperature, although SWCNTs selectivity decreased above the optimum synthesis temperature. Results established a clear link between the degree of dispersion of iron oxide species inside the MgO lattice and the catalyst selectivity for SWCNT growth.  相似文献   

13.
The effects of oxidative treatment of single-walled carbon nanotubes (SWCNTs) on the adhesion and proliferation of human osteoblasts (SAOS-2) were investigated. The surface properties of SWCNTs after oxygen plasma treatment were characterized by contact angle measurement, scanning electron microscopy and Raman spectroscopy. The immunofluorescent staining of vinculin, actin filaments and nuclei was used to probe cell adhesion and growth on SWCNT films. Our results show that adhesion and proliferation of human osteoblasts cultivated on SWCNT films indeed depends on the degree of an oxidative treatment. As an optimal procedure was found the treatment with oxygen plasma for 5 min. In the latter case the osteoblasts form a confluent layer with pronounced focal adhesions throughout the entire cell body. The optimal conditions compromise the effect of hydrophilic character of SWCNT films and the level of damage of SWCNT surface.  相似文献   

14.
Graphene nanoribbons were synthesized by oxidative unzipping of single-wall carbon nanotubes (SWCNTs). The nanoribbons produced from SWCNTs were characterized using FT-IR, Raman and X-ray photoelectron spectroscopy. For the morphological study of the product obtained from the SWCNT unzipping reaction, transmission electron microscopy and atomic force microscopy were used, confirming the typical graphene nanoribbon structure.  相似文献   

15.
Accurate purity evaluation of single-walled carbon nanotubes (SWCNTs) forms the basis for an improvement of material quality during synthesis and purification. We propose a novel purity evaluation method of as-produced and purified SWCNTs by using ultraviolet–visible-near infrared absorption spectroscopy. Our approach integrates the absorption peaks from the interband electronic transitions of semiconducting and metallic tubes after the linear subtraction of π-plasmon contribution in optical absorption spectra from SWCNT-containing samples. For the constructed sample sets prepared by mixing designed amounts of highly pure SWCNTs and carbonaceous impurities, this method has demonstrated quite a good closeness of the measured purities to the designed ones. Our novel purity-evaluation method has also verified its usability for a set of arc-produced samples having different SWCNT purities, prepared by isothermal oxidation at 275∼475 °C.  相似文献   

16.
The effect of montmorillonite and shear stress on the orientation of single walled carbon nanotubes and properties of SWCNT/MMT/polypropylene composite was investigated. The effect of functionalization of SWCNT on the orientation was also investigated. Polarized Raman spectroscopy was used to analyze the orientation of the SWCNTs. Orientation of SWCNTs was dependent on the experienced shear stress and functionalization of SWCNTs. The addition of MMT also improved the orientation of functionalized SWCNTs, while its effect was not significant for pristine SWCNTs. The existence of critical shear stress was observed for the orientation of the SWCNTs and the orientation of SWCNTs was found to occur more efficiently above this critical shear stress. Melt viscosity and heat of fusion data also confirmed that the addition of MMT‐induced improved orientation and dispersion of SWCNTs, especially for functionalized SWCNTs. POLYM. ENG. SCI., 54:2455–2459, 2014. © 2013 Society of Plastics Engineers  相似文献   

17.
Two different lipophilic guanosine derivatives (LipoGs) have been used for the disaggregation of single walled carbon nanotubes (SWCNTs) in chloroform. UV–vis–NIR spectrophotometry, Raman spectroscopy and NIR-photoluminescence measurements as well as AFM and SEM highlight a well debundling of SWCNTs while fluorescence measurements show the adsorption of LipoGs onto SWCNT surface. The ability of LipoGs to disperse SWCNTs has been demonstrated to depend on their tendency to self-assemble into ribbon-like supramolecular structures. In turn, the super-organization of these supramolecular structures appears to control the homogeneity of the dispersion.  相似文献   

18.
Single-walled carbon nanotubes (SWCNTs) with high aspect ratios were well dispersed in organic solvents to form stable suspensions using poly(2-dimethylaminoethyl methacrylate-co-styrene) (poly(DMAEMA-co-St)). The polymeric dispersant poly(DMAEMA-co-St) was synthesized in various compositions by atom transfer radical polymerization. The structures and the compositions of the poly(DMAEMA-co-St) were confirmed by 1H NMR spectroscopy. The stability and dispersion of the functionalized SWCNTs with high aspect ratios in suspension were observed by dispersion stability analysis, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. The existence of unbundled SWCNTs was confirmed by Raman and ultraviolet/visible/near-infrared spectroscopy. Finally, SWCNT transparent conductive films with high transmittances and low sheet resistances were prepared on a poly(ethylene terephthalate) substrate using a spin-coating method.  相似文献   

19.
The slow diffusion of Tween80 surfactant molecules in a single-walled carbon nanotube (SWCNT) aqueous dispersion was directly observed using the pulsed field gradient nuclear magnetic resonance method. The slow diffusion of Tween80 molecules was attributed to the strongly adsorbed molecules on the SWCNTs in the aqueous dispersion. The amount of bound Tween80 molecules was estimated to be approximately 12% of the total amount of Tween80 molecules, contributing to the stability of the SWCNT aqueous dispersion. Using dynamic light scattering and total organic carbon measurements, this SWCNT/Tween80 aqueous dispersion was found to be very stable for at least 3 weeks. The observed zeta potentials of this SWCNT dispersion are between −10 and 0 mV, indicating that the stability of the SWCNTs in the Tween80 solution was maintained by steric interactions between the small amount of adsorbed Tween80 molecules on the SWCNTs, while the effect of electrostatic interactions between adsorbed Tween80 was minimal. This proposed method to investigate the amount of bound Tween80 molecules on SWCNTs has potential benefits in the field of the production of functional materials and nano-toxicity assessments.  相似文献   

20.
This work tries to study the problem of methanol crossover through the polymer electrolyte in direct methanol fuel cells (DMFCs) by developing new cathode electrocatalysts. For this purpose, a series of gas diffusion electrodes (GDEs) were prepared by using single-walled carbon nanotubes (SWCNTs) supported Pt–Pd (Pt–Pd/SWCNT) with different Pd contents at the fixed metal loading of 50 wt%, as bimetallic electrocatalysts, in the catalyst layer. Pt–Pd/SWCNT was prepared by depositing the Pt and Pd nanoparticles on a SWCNTs support. The elemental compositions of bimetallic catalysts were characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES) system. The performances of the GDEs in the methanol oxidation reaction (MOR) and in the oxygen reduction reaction with/without the effect of methanol oxidation reaction were investigated by means of electrochemical techniques: cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS). The results indicated that GDEs with Pt–Pd/SWCNT possess excellent electrocatalytic properties for oxygen reduction reaction in the presence of methanol, which can originate from the presence of Pd atoms and from the composition effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号