首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bio-carbon template (charcoal) was prepared by carbonizing pine wood at 1200 °C under vacuum, and was impregnated with phenolic resin/SiO2 sol mixture by vacuum/pressure processing. Porous SiC ceramics with hybrid pore structure, a combination of tubular pores and network SiC struts in the tubular pores, were fabricated via sol–gel conversion, carbonization and carbothermal reduction reaction at elevated temperatures in Ar atmosphere. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) were employed to characterize the phase identification and microstructural changes during the C/SiO2 composites-to-porous SiC ceramic conversion. Experimental results show that the density of C/SiO2 composite increases with the number of impregnation procedure, and increases from 0.32 g cm−3 of pine-derived charcoal to 1.5 g cm−3 of C/SiO2 composite after the sixth impregnation. The conversion degree of charcoal to porous SiC ceramic increases as reaction time is lengthened. The resulting SiC ceramic consists of β-SiC with a small amount of α-SiC. The conversion from pine charcoal to porous SiC ceramic with hybrid pore structure improves bending strength from 16.4 to 42.2 MPa, and decreases porosity from 76.1% to 48.3%.  相似文献   

2.
《Ceramics International》2017,43(17):14683-14692
Cordierite-silica bonded porous SiC ceramics were fabricated by infiltrating a porous powder compact of SiC with cordierite sol followed by sintering at 1300–1400 °C in air. The porosity, average pore diameter and flexural strength of the ceramics varied 30–36 vol%, ~ 4–22 µm and ~ 13–38 MPa respectively with variation of sintering temperature and SiC particle sizes. In the final ceramics SiC particles were bonded by the oxidation-derived SiO2 and sol-gel derived cordierite. The corrosion behaviour of sintered SiC ceramics was studied in acidic and alkaline medium. The porous SiC ceramics were observed to exhibit better corrosion resistance in acid solution.  相似文献   

3.
Porous SiOC ceramics were obtained from a new self-blowing precursor silicone resin DC217, by pyrolysis at 1200 °C in argon. Silicon carbide powders were incorporated into the silicone resin as inert fillers. The effects of the mean particle size of SiC fillers on the porosity, compressive strength and microstructure of the porous ceramics were investigated. With the mean particle size of SiC powders increasing from 5 μm to 10 μm, the porosity (total and open) of the porous ceramic increased and the compressive strength decreased. However, the porosity, compressive strength and cell morphology of the porous ceramics showed no evident changes when the mean particle size of fillers increased from 10 μm to 15 μm. Micrographs indicated that, when the mean particle size of fillers exceeded 5 μm, the porous ceramics could have a well-defined and regular pore structure. Furthermore, comparing with the porous ceramics which fabricated under the same condition with the SiOC powders as fillers, the cell morphology was similar. But the compressive strength and the oxidation resistance of the porous ceramics with SiC powders as fillers were much better.  相似文献   

4.
《Ceramics International》2017,43(15):11855-11863
A new gradient pore structure in porous SiC ceramics was fabricated by low pressure chemical vapor infiltration (LPCVI). Effects of deposition duration on the mechanical properties and permeability of porous SiC ceramics were investigated. Results demonstrated that pore diameter and shapes decreased from the surface to the interior along with LPCVI duration. Porous SiC ceramics with deposition duration of 160 h exhibited flexural strength of 48.05 MPa and fracture toughness of 1.30 MPa m1/2, where 221% and 189% improvements were obtained compared to porous SiC ceramics without LPCVI, due to CVI-SiC layer strengthening effect. Additionally, at the same gas velocity, pressure drop increase rate was faster due to apparent porosity and pore size change.  相似文献   

5.
《Ceramics International》2017,43(6):4814-4820
Si-B-C-N monoliths with 5 wt% LaB6 additives were prepared by spark plasma sintering at 1250–2000 °C and 50 MPa using a mechanically alloyed mixture of graphite, c-Si, h-BN and LaB6 powders as the starting materials. Microstructural evolution, mechanical and thermal properties of the as-prepared La/Si-B-C-N monoliths were investigated. The densification of the ceramics starts at 1160° and ends at 1800 °C with the formation of La-containing compounds coupled with SiC and BN(C) phases. La-containing BN(C) grains develop into a lamellar structure at 1900 °C offering improved fracture toughness and decreased Vickers hardness, flexural strength and elastic modulus. The formation of lamellar BN(C) is also responsible for a high thermal expansion coefficient of 4.2×10−6 /°C.  相似文献   

6.
A novel processing route for producing microcellular SiC ceramics with a duplex pore structure has been developed using a polysiloxane, carbon black, SiC, Al2O3, Y2O3, and two kinds of pore former (expandable microspheres and PMMA spheres). The duplex pore structure consists of large pores derived from the expandable microspheres and small windows in the strut area that were replicated from the PMMA spheres. The presence of these small windows in the strut area improved the permeability of the porous ceramics. The gas permeability coefficients of porous SiC ceramics were 0.13 × 1012 m2 for the porous SiC without PMMA spheres, 0.47 × 1012 m2 for the porous SiC with 10 wt% PMMA spheres, and 0.82 × 1012 m2 for the porous SiC with 20 wt% PMMA.  相似文献   

7.
We developed a simple liquid precursor method for the syntheses of porous ZrB2/ZrC/SiC composite monoliths. Furfuryl alcohol (FA), zirconium n-butoxide, tetraethyl orthosilicate and boric acid are used as the raw materials. By combining the polymerization of FA and gelation of inorganic sols, porous hybrid monoliths are prepared by direct drying the wet gels. The inorganic and organic polymers possibly form interpenetrated network which provides the robustness for the wet gel to withstand the severe changes during dessication. When heat-treated at 1600 °C, hybrid gels are converted into porous ZrB2/ZrC/SiC monoliths. The microstructure of the ZrB2/ZrC/SiC monoliths can be easily tailored by controlling the synthesis conditions. The porosities of the ZrB2/ZrC/SiC monoliths can be tuned around 74.3–81.6%, while the average pore diameters can be tuned ranging from 1.0 to 8.5 μm with pretty narrow distribution. The compressive strengths of such highly porous ceramics are in the range of 1.2–1.9 MPa.  相似文献   

8.
Porous alumina ceramics with unidirectionally-oriented pores were prepared by extrusion. Carbon fibers of 14 μm diameter and 600 μm length to be used as the pore-forming agent were kneaded with alumina, binder and dispersing agent. The resulting paste was extruded, dried at 110 °C, degreased at 1000 °C and fired at 1600 °C for 2 h. SEM showed a microstructure of dispersed highly oriented pores in a dense alumina matrix. The pore area in the cross section was 25.3% with about 1700 pores/mm2. The pore size distribution of the fired body measured by Hg porosimetry showed a sharp peak corresponding to the diameter of the burnt-out carbon fibers. The resulting porous alumina ceramics with 38% total porosity showed a fracture strength of 171 MPa and a Young's modulus of 132 GPa. This strength is significantly higher than the reported value for other porous alumina ceramics even though the present pore size is much larger.  相似文献   

9.
Silicon carbide (SiC) with ultra high porosity and unidirectionally oriented micrometer-sized cylindrical pores was prepared using a novel gelation–freezing (GF) method. Gelatin, water and silicon carbide powder were mixed and cooled at 7 °C. The obtained gels were frozen from ?10 to ?70 °C, dried using a vacuum freeze drier, degreased at 600 °C and then sintered at 1800 °C for 2 h. The gels could be easily formed into various shapes, such as cylinders, large pipes and honeycombs using molds. Scanning electron microscopy (SEM) observations of the sintered bodies showed a microstructure composed of ordered micrometer-sized cylindrical cells with unidirectional orientation. The cell size ranging from 34 to 147 μm could be modulated by changing the freezing temperatures. The numbers of cells for the samples frozen at ?10 and ?70 °C were 47 and 900 cells/mm2, respectively, as determined from cross-sections of the sintered bodies. The resulting porous SiC with a total porosity of 86%, exhibited air permeability from 2.3 × 10?11 to 1.0 × 10?10 m2, which was the same as the calculated ideal permeability, and high compressive strength of 16.6 MPa. The porosity, number of cells, air permeability and strength of the present porous SiC were significantly higher than that reported for other porous SiC ceramics.  相似文献   

10.
Graphitized carbide-derived-carbon (CDC) with hierarchical micro- and meso-pores is synthesized by chlorination of titanium carbide powder at 1000 °C. The produced CDC has many bilayer graphenes and some narrow graphite ribbons, which contributes a large amount of micropores (∼1.35 nm) and some mesopores. Although hierarchical pore is an attractive structure for supercapacitor, the low hydrophilicity of the graphitized CDC leads to poor electrochemical performance in alkaline electrolyte. The specific capacitance of the CDC in KOH aqueous electrolyte is only 5 F g−1. A strategy that adding ethanol to alkaline electrolyte is presented to improve its surface wettability. The specific capacitance of the graphitized CDC in KOH aqueous electrolyte with addition of ethanol increases to 60 F g−1 at a scan rate of 20 mV s−1. The optimal content of ethanol in KOH electrolyte is 10 wt.%. In addition, cyclic voltammogram curve can maintain a quasi-rectangular shape well even at a scan rate of 500 mV s−1 and the retention rate of the specific capacitance is about 70%. The specific capacitance is stable at high current density (e.g. 1 A g−1), and almost no performance degradation is observed after 8000 consecutive cycles.  相似文献   

11.
The influence of silicon carbide (SiC) particle size on the microstructure and mechanical properties of zirconium diboride–silicon carbide (ZrB2–SiC) ceramics was investigated. ZrB2-based ceramics containing 30 vol.% SiC particles were prepared from four different α-SiC precursor powders with average particle sizes ranging from 0.45 to 10 μm. Examination of the dense ceramics showed that smaller starting SiC particle sizes led to improved densification, finer grain sizes, and higher strength. For example, ceramics prepared from SiC with the particle size of 10 μm had a strength of 389 MPa, but the strength increased to 909 MPa for ceramics prepared from SiC with a starting particle size of 0.45 μm. Analysis indicates that SiC particle size controls the strength of ZrB2–SiC.  相似文献   

12.
《Ceramics International》2007,33(6):905-909
Three-dimensional braided carbon fiber-reinforced silicon carbide (3D-Cf/SiC) composites were prepared through eight cycles of infiltration of polycarbosilane (PCS)/divinylbenzene (DVB) and subsequent pyrolysis under an inert atmosphere. The effects of infiltration processes on the microstructure and mechanical properties of the Cf/SiC composites were investigated. The results showed that increasing temperature could reduce the viscosity of the PCS/DVB solution, which was propitious to the infiltration processes. The density and flexural strength of 3D-Cf/SiC composites fabricated with vacuum infiltration were 1.794 g cm−3 and 557 MPa, respectively. Compared to vacuum infiltration, heating and pressure infiltration could improve the infiltration efficiency so that the composites exhibited higher density and flexural strength, i.e., 1.944 g cm−3 and 662 MPa. When tested at 1650 °C and 1800 °C in vacuum, the flexural strength reached 647 MPa and 602 MPa, respectively.  相似文献   

13.
A two-step process has been developed for silicon carbide (SiC) coated polyurethane mimetic SiC preform containing silicon nitride (Si3N4) whiskers. SiC/Si3N4 preforms were prepared by pyrolysis/siliconization treatment at 1600 °C, of powder compacts containing rigid polyurethane, novolac and Si, forming a porous body with in situ grown Si3N4 whiskers. The properties were controlled by varying Si/C mole ratios such as 1–2.5. After densification using a chemical vapour infiltration, the resulting SiC/Si3N4/SiC composites showed excellent oxidation resistance, thermal conductivity of 4.32–6.62 Wm−1 K−1, ablation rate of 2.38 × 10−3  3.24 × 10−3 g cm−2 s and a flexural strength 43.12–55.33 MPa for a final density of 1.39–1.62 gcm−3. The presence of a Si3N4 phase reduced the thermal expansion mismatch resulting in relatively small cracks and well-bonded layers even after ablation testing. This innovative two-step processing can provide opportunities for expanded design for using SiC/Si3N4/SiC composites being lightweight, inexpensive, homogeneous and isotropic for various high temperature applications.  相似文献   

14.
Unique porous SiC ceramics with a honeycomb structure were fabricated by a sintering-decarburization process. In this new process, first a SiC ceramic bonded carbon (SiC/CBC) is sintered in vacuum by spark plasma sintering, and then carbon particles in SiC/CBC are volatized by heating in air at 1000 °C without shrinkage. The honeycomb structure has at least two different sizes of pores; ∼20 μm in size resulting from carbon removal; and smaller open pores of 2.1 μm remaining in the sintered SiC shell. The total porosity is around 70% and the bulk density is 0.93 mg/m3. The bending and compressive strengths are 26 MPa, and 105 MPa, respectively.  相似文献   

15.
Spherical SiC powders were prepared at high temperature using commercial SiC powders (4.52 µm) with irregular morphology. The influence of spherical SiC powders on the properties of SiC porous ceramics was investigated. In comparison with the as-received powders, the spheroidized SiC powders exhibited a relatively narrow particle size distribution and better flowability. The spheroidization mechanism of irregular SiC powder is surface diffusion. SiC porous ceramics prepared from spheroidized SiC powders showed more uniform pore size distribution and higher bending strength than that from as-received SiC powders. The improvement in the performance of SiC porous ceramics from spheroidized powder was attributed to tighter stacking of spherical SiC particles. After sintering at 1800 °C, the open porosity, average pore diameter, and bending strength of SiC porous ceramics prepared from spheroidized SiC powder were 39%, 2803.4 nm, and 66.89 MPa, respectively. Hence, SiC porous ceramics prepared from spheroidized SiC powder could be used as membrane for micro-filtration or as support of membrane for ultra/nano-filtration.  相似文献   

16.
In this study, a commercial polycarbosilane (PCS) and divinylbenzene (DVB) were used as the preceramic polymer precursor and crosslinking agent, respectively to form porous silicon carbide (SiC) ceramics by freeze casting DVB/camphene/PCS solutions. Porous silicon carbide (SiC) with a dendritic pore structure and connecting bridges was obtained after pyrolysis at 1200 °C. The effects of DVB and PCS content on the rheological properties of the solution and the morphological characteristics and the compressive strengths of SiC ceramics were investigated. The use of DVB and the resulting chemical cross-linking yielded modified pore characteristics and much lower oxygen content in pyrolyzed SiC compared to the conventional thermal curing method. A compressive strength of 18.7 MPa was obtained for pyrolyzed SiC prepared with 20 wt% PCS and a 0.2 DVB/PCS mass ratio.  相似文献   

17.
Porous alumina ceramics having unidirectionally aligned cylindrical pores were prepared by extrusion method and compared with porous ceramics having randomly distributed pores prepared by conventional method, and their gas permeability and mechanical properties were investigated. SEM micrographs of the porous alumina ceramics prepared by the extrusion method using nylon fibers as the pore former showed excellent orientation of cylindrical pores. The bending strength and Weibull modulus of the extruded porous alumina ceramics with 39% porosity were 156 MPa and 17, respectively. These mechanical properties of extruded samples were higher than those of the conventional porous alumina ceramics. The strength decreased from 156 to 106 MPa with increasing pore size from 8.5 to 38 μm. The gas permeability of the extrusion samples is higher than that of the conventional samples and increased with increasing of porosity and pore size.  相似文献   

18.
In the present communication, effect of boron carbide particle size on the mechanical properties such as hardness, fracture toughness and flexural strength of reaction bonded boron carbide (RBBC) ceramics were investigated. RBBC composites were produced by the reactive infiltration of molten silicon into porous preform containing boron carbide and free carbon. Boron carbide powders with mean particle size of 18.65 μm, 33.70 μm and 63.35 μm were chosen for the RBBC composites. The experimental results show that hardness increases from 1261.70±64.74 kg/mm2 to 1674.90±100.00 kg/mm2 and fracture toughness drops from 5.76±0.26 MPa m1/2 to 3.4±0.37 MPa m1/2. However, flexural strength decreases from 403.41±5.70 MPa to 256.15±25.05 MPa with the increase in particle size. Indentation induced cracks in RBBC are mainly median type and number of cracks increase with the increase of starting particle size.  相似文献   

19.
20.
《Ceramics International》2016,42(12):13796-13804
Recently, porous ceramic membranes have become a subject of significant interest due to their outstanding thermal and chemical stability. To reduce the high manufacturing costs of these porous ceramic membranes, recent research has focused on the utilization of inexpensive natural materials. However, there have not been any well-established direct comparisons of the membrane properties between typical alumina-based membranes and novel natural material-based membranes. Therefore, we compared alumina-coated alumina support layers (with average pore sizes ranging from 0.10 µm ~0.18 µm), alumina-coated diatomite-kaolin composite support layers (with an average pore size of 0.12 µm), and alumina-coated pyrophyllite-diatomite composite support layers (with an average pore size of 0.11 µm) via the dip-coating method and subsequent heat treatment ranging from 1200 °C–1400 °C for 1 h. The pure water permeability of the alumina-coated diatomite-kaolin composite support layer and the alumina-coated pyrophyllite-diatomite composite support layer was found to be approximately 2.0×102 L m−2 h−1 bar−1, which is similar to that of an alumina-coated alumina support layer. Therefore, we suggest that the average pore size of an alumina-coated natural material-based support layer can be effectively controlled while exhibiting acceptable water permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号