共查询到20条相似文献,搜索用时 15 毫秒
1.
Low‐dielectric‐constant (low‐κ) materials are a critical requirement for future generations of computer microprocessors. As a unique class of porous silicas, pure silica zeolites (PSZs) have been shown to be a promising low‐κ material with excellent mechanical strength (e.g., elastic modulus of 16–18 GPa) due to their crystalline nature. In the present study, we show for the first time that higher crystallinity of spin‐on PSZ MFI films leads to lower κ values and less moisture sensitivity—two critical properties of a porous low‐κ material. We have also advanced the two‐stage synthesis method to produce zeolite nanoparticles with high yield (77 %) and a small diameter (< 80 nm). A κ value of 1.6 is obtained from the silylated highly crystalline PSZ MFI film and the κ value only increases by 12.5 % after exposure to ambient conditions for a period of 24 h. 相似文献
2.
Kelly N. L. Huggins Alia P. Schoen Manickam Adhimoolam Arunagirinathan Sarah C. Heilshorn 《Advanced functional materials》2014,24(48):7737-7744
The use of biological scaffolds to template inorganic material offers a strategy to synthesize precise composite nanostructures of different sizes and shapes. Proteins are unique biological scaffolds that consist of multiple binding regions or epitope sites that site‐specifically associate with conserved amino acid sequences within protein‐binding partners. These binding regions can be exploited as synthesis sites for multiple inorganic species within the same protein scaffold, resulting in bimetallic inorganic nanostructures. This strategy is demonstrated with the scaffold protein clathrin, which self‐assembles into spherical cages. Specifically, tether peptides that noncovalently associate with distinct clathrin epitope sites, while initiating simultaneous synthesis of two inorganic species within the assembled clathrin protein cage, are designed. The flexibility and diversity of this unique biotemplating strategy is demonstrated by synthesizing two types of composite structures (silver–gold mixed bimetallic and silver–gold core–shell nanostructures) from a single clathrin template. This noncovalent, Template Engineering Through Epitope Recognition, or TEThER, strategy can be readily applied to any protein system with known epitope sites to template a variety of bimetallic structures without the need for chemical or genetic mutations. 相似文献
3.
This study demonstrates a novel approach towards the development of advanced protein assay systems based on physically functionalized, magnetic‐core/porous‐shell CoFe2O4/SiO2 composite nanoparticles. The preparation, characterization, and measurement of the relevant properties of the protein assay system is discussed, and the system is used for the detection of cancer antigen 15‐3 (CA 15‐3, used as a model here) in clinical immunoassays. The protein assay system, based on nanometer‐sized magnetic cores and silica shells, shows good adsorption properties for the selective attachment of CA 15‐3 antibodies specific to CA 15‐3. The core/shell nanostructures exhibit good magnetic properties, which enables their integration into a quartz crystal microbalance (QCM) detection cell with the help of a permanent magnet. Under optimal conditions, the resulting immunoassay system presents a good QCM response for the detection of CA 15‐3, and allows the detection of CA 15‐3 at concentrations as low as 1.5 U mL–1 (U: units). Importantly, the proposed protein assay system can be extended to the detection of other antigens and biological compounds. 相似文献
4.
In this paper, we systematically report the preparation of carbon‐nanotube (CNT)‐reinforced Zr‐based bulk metallic glass (BMG) composites. The physical and mechanical properties of the composites were investigated. Compressive testing shows that the composites still display high fracture strength. Investigation also shows that the composites have strong ultrasonic attenuation characteristics and excellent wave absorption ability. The strong wave absorption implies that CNT‐reinforced Zr‐based BMG composites, besides their excellent mechanical properties, may also have significant potential for applications in shielding acoustic sound or environmental noise. 相似文献
5.
This review article summarizes recent progress in the fabrication methodologies and functional modulations of nanoparticle (NP)–polymer composites. On the basis of the techniques of NP synthesis and surface modification, the fabrication methods of nanocomposites are highlighted; these include surface‐initiated polymerization on NPs, in situ formation of NPs in polymer media, and the incorporation through covalent linkages and supramolecular assemblies. In these examples, polymers are foremost hypothesized as inert hosts that stabilize and integrate the functionalities of NPs, thus improving the macroscopic performance of NPs. Furthermore, due to the unique physicochemical properties of polymers, polymer chains are also dynamic under heating, swelling, and stretching. This creates an opportunity for modulating NP functionalities within the preformed nanocomposites, which will undoubtedly promote the developments of optoelectronic devices, optical materials, and intelligent materials. 相似文献
6.
Condensing heat exchangers onboard manned spacecraft require hydrophilic fin surfaces to facilitate wetting and wicking of condensate to achieve gravity‐independent water separation in the zero‐ or micro‐gravity environment of space. In order to prevent the proliferation of microbes, the coating must also be biocidal. Here we show for the first time that zeolite A and ZSM‐5 coatings deposited via in‐situ crystallization on stainless steel and aluminum alloys have excellent hydrophilicity, biocidal properties, and adhesion. Water contact angles below 5° were obtained on most substrates tested. When silver‐ion exchange is carried out on the zeolite A coating, it becomes highly antibacterial. This biocidal capability of zeolite A is regenerative by repeated ion exchange. All coatings exhibit the highest rating of 5B as determined by adhesion test ASTM D‐3359‐02 (American Society for Testing and Materials). These properties, in addition to zeolite coating's low‐temperature crystallization process and demonstrated corrosion resistance, make zeolite coatings advantageous over the current sol–gel coatings and well suited for use in condensing heat exchangers onboard manned spacecraft. 相似文献
7.
Chun‐Hsien Wu Jason Cook Stanislav Emelianov Konstantin Sokolov 《Advanced functional materials》2014,24(43):6862-6871
Multimodal nanostructures can help solve many problems in the biomedical field including sensitive molecular imaging, highly specific therapy, and early cancer detection. However, the synthesis of densely packed, multicomponent nanostructures with multimodal functionality represents a significant challenge. Here, a new type of hybrid magneto‐plasmonic nanoparticles is developed using an oil‐in‐water microemulsion method. The nanostructures are synthetized by self‐assembly of primary 6 nm iron oxide core‐gold shell particles resulting into densely packed spherical nanoclusters. The dense packing of primary particles does not change their superparamagnetic behavior; however, the close proximity of the constituent particles in the nanocluster leads to strong near‐infrared (NIR) plasmon resonances. The synthesis is optimized to eliminate nanocluster cytotoxicity. Immunotargeted nanoclusters are also developed using directional conjugation chemistry through the Fc antibody moiety, leaving the Fab antigen recognizing region available for targeting. Cancer cells labeled with immunotargeted nanoclusters produce a strong photoacoustic signal in the NIR that is optimum for tissue imaging. Furthermore, the labeled cells can be efficiently captured using an external magnetic field. The biocompatible magneto‐plasmonic nanoparticles can make a significant impact in development of point‐of‐care assays for detection of circulating tumor cells, as well as in cell therapy with magnetic cell guidance and imaging monitoring. 相似文献
8.
Eugene Shi Guang Choo Erwin Peng Reshmi Rajendran Prashant Chandrasekharan Chang‐Tong Yang Jun Ding Kai‐Hsiang Chuang Junmin Xue 《Advanced functional materials》2013,23(4):496-505
This study proposes a new method to generate positive contrast in magnetic resonance imaging (MRI) using superparamagnetic contrast agents. Superparamagnetic nanostructures consisting of octahedron manganese ferrite nanoparticles embedded in spherical nanogels are fabricated using a bottom‐up approach. The composite nanoparticles are strongly magnetized in an external magnetic field and produce a unique NMR frequency shift in water protons, which can be demonstrated in MR spectroscopy and imaging to be different from the bulk pool. Moreover, the particles exhibit excellent colloidal stability in aqueous media and good cell biocompatibility. Hence, these particles are potentially useful as biomarkers by taking advantage of the positive contrast effects produced in MRI. 相似文献
9.
Y. Xu Q. Jiang Y. Cao Y.L. Wei Z.Y. Yun J.H. Xu Y. Wang C.F. Zhou L.Y. Shi J.H. Zhu 《Advanced functional materials》2004,14(11):1113-1123
Two novel porous nitrosamine traps have been synthesized in order to eliminate carcinogens from the environment. A functional mesoporous material, CuO/SBA‐15, has been synthesized by using an in‐situ coating method, with the addition of a guest salt to the reaction system to modify the porous materials before the particles of SBA‐15 were incubated; the synthesis and modification processes were performed in a single step. The resulting mesoporous composites selectively adsorb N‐nitrosopyrrolidine (NPYR), a typical volatile nitrosamine, and are potential cigarette additives that can be used for the removal of nitrosamines from cigarette smoke, thereby protecting public health and the environment. In another reaction, silica gel is modified by being coated with magnesia and then corroded by NaOH solution.The magnesia is dispersed onto the silica by impregnating it with a magnesium acetate solution, followed by calcination. After corrosion of the calcined sample with caustic soda, only the silica particles that are completely covered by magnesia remain. This material exhibits a similar ability to SBA‐15 and zeolite NaY in its selective adsorption of NPYR. 相似文献
10.
Core–shell zeolite composites possessing a core and a shell of different zeolite structure types have been synthesized. A characteristic feature of the obtained composites is the relatively large single‐crystal core and the very thin polycrystalline shell. The incompatibility between the core crystals and the zeolite precursor mixture yielding the shell layer has been circumvented by the adsorption of nanoseeds on the core surface, which induced the crystallization of the shell. The pretreated core crystals are subsequently subjected to a continuous growth in a zeolite precursor mixture. The feasibility of this synthetic approach has been exemplified by the preparation of core–shell β‐zeolite–silicalite‐1 composites. The synthesized composites have been characterized using X‐ray diffraction, high‐resolution transmission electron microscopy, and scanning electron microscopy. The integrity of the shell layer has been tested via N2‐adsorption measurements on materials comprising a calcined core (β‐zeolite) and a non‐calcined tetrapropylammonium (TPA)‐containing shell, the latter being non‐permeable for the N2 molecules. These measurements have shown that 86 % of the β‐zeolite crystals are covered with a defect‐free TPA–silicalite‐1 shell after a single hydrothermal treatment, while after three consecutive crystallization steps this value reaches 99 %. The shell integrity of the calcined composite has been studied by the adsorption of butane, toluene, and 1,3,5‐trimethylbenzene, which confirmed the superior performance of the triple‐shell composites. 相似文献
11.
David Conklin Tae‐Hong Park Sanjini Nanayakkara Michael J. Therien Dawn A. Bonnell 《Advanced functional materials》2011,21(24):4712-4718
In spite of novel lithographic processes that enable new approaches to fabricating materials, directed assembly of multi‐component hybrid devices remains a challenge. Ferroelectric nanolithography exploits polarization dependent surface interactions to pattern nanoparticles, but the factors that control the particle size and distribution are not sufficiently well understood to produce hybrid nanostructures. Here the effects of photon energy, photon flux, and polarization vector orientation on ferroelectric domain specific photoreactions are quantified, leading to an understanding of the nanoparticle deposition mechanism. Patterned nanoparticle arrays functionalized with optically active porphyrin complexes are configured into optoelectronic devices. 相似文献
12.
H. Stillrich A. Frmsdorf S. Pütter S. Frster H.P. Oepen 《Advanced functional materials》2008,18(1):76-81
A new and simple method for the preparation of magnetic dot arrays is introduced. Diblock copolymer micelles with a silica core are used as template for the generation of nanostructure arrays. The silica cores are utilized as mask for ion milling preparation. The morphology and size of the silica and magnetic dot arrays are discussed. The magnetic dots are made from Co/Pt multilayer films. Ferromagnetic dots with a diameter well below 20 nm and perpendicular easy axis of magnetization are created. The switching behavior changes from domain wall motion, dominant in the film, to single domain particle switching in the dots. The magneto‐optic saturation signals and the evolution of magnetic anisotropy are discussed. 相似文献
13.
Kanhu C. Barick Sarika Singh Neena V. Jadhav Dhirendra Bahadur Badri N. Pandey Puthusserickal A. Hassan 《Advanced functional materials》2012,22(23):4975-4984
The design and development of water dispersible, pH responsive peptide mimic shell cross‐linked magnetic nanocarriers (PMNCs) using a facile soft‐chemical approach is reported. These nanocarriers have an average size about 10 nm, are resistant to protein adsorption in physiological medium, and transform from a negatively charged to a positively charged form in the acidic environment. The terminal amino acid on the shell of the magnetic nanocarriers allows us to create functionalized exteriors with high densities of organic moieties (both amine and carboxyl) for conjugation of drug molecules. The drug‐loading efficiency of the nanocarriers is investigated using doxorubicin hydrochloride (DOX) as a model drug to evaluate their potential as a carrier system. Results show high loading affinity of nanocarriers for anticancer drug, their sustained release profile, magnetic‐field‐induced heating, and substantial cellular internalization. Moreover, the enhanced toxicity to tumor cells by DOX‐loaded PMNCs (DOX‐PMNCs) under an AC magntic field suggest their potential for combination therapy involving hyperthermia and chemotherapy. 相似文献
14.
Amir Fahmi Torsten Pietsch Maria Bryszewska José Carlos Rodríguez‐Cabello Aneta Koceva‐Chyla Francisco Javier Arias Matilde Alonso Rodrigo Nabil Gindy 《Advanced functional materials》2010,20(6):1011-1018
The design and synthesis of nanostructured functional hybrid biomaterials are essential for the next generation of advanced diagnostics and the treatment of disease. A simple route to fabricate semiconductor nanofibers by self‐assembled, elastin‐like polymer (ELP)‐templated semiconductor nanoparticles is reported. Core–shell nanostructures of CdSe nanoparticles with a shell of ELPs are used as building blocks to fabricate functional one‐dimensional (1D) nanostructures. The CdSe particles are generated in situ within the ELP matrix at room temperature. The ELP controls the size and the size‐distribution of the CdSe nanoparticles in an aqueous medium and simultaneously directs the self‐assembly of core–shell building blocks into fibril architectures. It was found that the self‐assembly of core–shell building blocks into nanofibers is strongly dependent on the pH value of the medium. Results of cytotoxicity and antiproliferation of the CdSe‐ELP nanofibers demonstrate that the CdSe‐ELP does not exhibit any toxicity towards B14 cells. Moreover, these are found to be markedly capable of crossing the cell membrane of B14. In contrast, unmodified CdSe nanoparticles with ELPs cause a strong toxic response and reduction in the cell proliferation. This concept is valid for the fabrication of a variety of metallic and semiconductor 1D‐architectures. Therefore, it is believed that these could be used not only for biomedical purposes but for application in a wide range of advanced miniaturized devices. 相似文献
15.
We report the preparation and properties of metallopolymeric composites with acidic and basic properties. The composites are prepared via the recently developed method of entrapping organic molecules within metals. Specifically, we describe the entrapment of the polyacid Nafion or the polybase poly(vinylbenzyltrimethylammonium hydroxide) within silver. The resulting acidic or basic metallic composites decrease or increase, respectively, the pH of water through an ion‐exchange process. Furthermore, silver doped with Nafion can be employed as an acid catalyst, as shown for the pinacol–pinacolone rearrangement and for the dehydration of an alcohol. Characterization of these novel materials via microscopy and adsorption studies reveals a three‐level hierarchical structure: clusters of ≈ 10 μm in size built from ≈ 1 μm aggregates of ≈ 100 Å silver crystals. Thermogravimetric analysis of the entrapped polymers reveals a catalytic effect of the metal on this process. The two polymers are entrapped differently, and the differences are discussed. Applications ranging from ion‐exchange electrodes to bifunctional catalysts are envisaged. 相似文献
16.
M. G. Sandros M. Behrendt D. Maysinger M. Tabrizian 《Advanced functional materials》2007,17(18):3724-3730
InGaP QDs overcoated with several monolayers of ZnS are covalently bound to chitosan to address the challenges of developing highly biologically stable and fluorescent nanoparticle probes for deep‐tissue imaging. Transmission electron microscopy images reveal that the average diameter of these luminescent nanoparticles is approximately 29 nm, and they contain multiple InGaP@ZnS QDs that have an average diameter between 4 and 5 nm. These new InGaP@ZnS–chitosan nanoparticles emit near the near IR region at 670 nm and are able to penetrate three times deeper into tissue (e.g., even through a mouse skull) while revealing a higher uptake efficiency into PC12 cells with a robust signal. Additionally, a cell viability assay demonstrates that these new fluorescent nanoparticles have good biocompatibility and stability with PC12 cells and neural cells. As a result, these near‐IR‐emitting nanoparticles can be used for real‐time and deep‐tissue examination of diverse specimens, such as lymphatic organs, kidneys, hearts, and brains, while leaving the tissue intact. 相似文献
17.
Jung Woo Lee Ravindranath Viswan Yoon Jeong Choi Yeob Lee Se Yun Kim Jaehun Cho Younghun Jo Jeung Ku Kang 《Advanced functional materials》2009,19(14):2213-2218
Using conventional methods to synthesize magnetic nanoparticles (NPs) with uniform size is a challenging task. Moreover, the degradation of magnetic NPs is an obstacle to practical applications. The fabrication of silica‐shielded magnetite NPs on carbon nitride nanotubes (CNNTs) provides a possible route to overcome these problems. While the nitrogen atoms of CNNTs provide selective nucleation sites for NPs of a particular size, the silica layer protects the NPs from oxidation. The morphology and crystal structure of NP–CNNT hybrid material is investigated by transmission electron microscopy (TEM) and X‐ray diffraction. In addition, the atomic nature of the N atoms in the NP–CNNT system is studied by near‐edge X‐ray absorption fine structure spectroscopy (nitrogen K‐edge) and calculations of the partial density of states based on first principles. The structure of the silica‐shielded NP–CNNT system is analyzed by TEM and energy dispersive X‐ray spectroscopy mapping, and their magnetism is measured by vibrating sample and superconducting quantum interference device magnetometers. The silica shielding helps maintain the superparamagnetism of the NPs; without the silica layer, the magnetic properties of NP–CNNT materials significantly degrade over time. 相似文献
18.
L. I. Devriese L. Cools A. Aerts J. A. Martens G. V. Baron J. F. M. Denayer 《Advanced functional materials》2007,17(18):3911-3917
The adsorption of linear and branched C5–C9 alkanes in the temperature range 50–250 °C on mesoporous MCM‐48 material and its microporous/mesoporous variant Zeotile‐2 at low surface coverage is investigated using the pulse chromatographic technique. On MCM‐48, the differences in adsorption between linear and branched alkanes are merely a result of differences in volatility, indicating that the MCM‐48 material does not present shape‐selective adsorption sites. On Zeotile‐2, there is a preferential adsorption of linear over branched alkanes. The difference arises from a difference in adsorption entropy rather than enthalpy. Upon their adsorption on Zeotile‐2 branched alkanes lose relatively more entropy than their linear isomers do. Zeolitic molecular pockets embedded in the walls of the mesoporous Zeotile‐2 impose steric constraints on the bulky isoalkanes. Zeotile‐2 combines adsorption properties from microporous and mesoporous materials. Compared to the nitrogen molecule, linear and branched C5–C9 alkanes are superior probes for investigating micropores and micropockets in hierarchical materials. 相似文献
19.
Hsi‐Chin Wu Tzu‐Wei Wang Martha C. Bohn Feng‐Huei Lin Myron Spector 《Advanced functional materials》2010,20(1):67-77
Nanoparticles (NPs) of synthetic hydroxyapatite (Hap) and natural bone mineral (NBM) are rendered magnetic by treatment with iron ions using a wet‐chemical process. The magnetic NPs (mNPs), which are about 300 nm in diameter, display superparamagnetic properties in a superconducting quantum interference device, with a saturation magnetization of about 30 emu g?1. X‐ray diffraction and transmission electron microscopy reveal that the magnetic properties of the NPs are the result of the hetero‐epitaxial growth of magnetite on the Hap and NBM crystallites. The mNPs display a high binding affinity for plasmid DNA in contrast to magnetite NPs which do not bind the plasmid well. The mHap and mNBM NPs result in substantial increases in the transfection of rat marrow‐derived mesenchymal stem cells with the gene for glial cell line‐derived neurotrophic factor (GDNF), with magnetofection compared to transfection in the absence of a magnet. The amount of GDNF recovered in the medium approaches therapeutic levels despite the small amount of plasmid delivered by the NPs. 相似文献
20.
Three‐dimensional (3D) foam structure of a Cu6Sn5 alloy was fabricated via an electrochemical deposition process. The walls of the foam structure are highly porous and consist of numerous small grains. When used as a negative electrode for a rechargeable lithium battery, the Cu6Sn5 samples delivered a reversible capacity of about 400 mA h g–1 up to 30 cycles. Further, these materials exhibit superior rate capability, attributed primarily to the unique porous structure and the large surface area for fast mass transport and rapid surface reactions. For instance, at a current drain of 10 mA cm–2 (20C rate), the obtainable capacity (220 mA h g–1) was more than 50 % of the capacity at 0.5 mA cm–2 (1C rate). 相似文献