首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Multi-walled carbon nanotubes (MWCNTs) were covalently grafted to cellulose to make an MWCNT/cellulose (M/C) composite. Aligned M/C composite was obtained by mechanical stretching process. The stretching effect was demonstrated by observing morphology as well as measuring mechanical, electrical and piezoelectric properties of the M/C composite. The influence of aligned MWCNTs on the actuator performance of the M/C composite was evaluated in terms of bending displacement and resonance frequency depending on the stretching ratio and environmental humidity level. The aligned MWCNTs contributed to remarkably enhancing the mechanical and piezoelectric properties, but also improving actuator performance of the M/C composite.  相似文献   

2.
Composites of multi-walled carbon nanotubes (MWCNTs) in ABC block terpolymer matrices of different compositions are studied. The composites were obtained by dispersion of MWCNTs in poly(styrene-block-butadiene-block-methyl methacrylate) (SBM) in a selective solvent for the M block, followed by solvent evaporation and compression molding. The structures of the MWCNT/SBM composites are investigated by transmission electron microscopy. The processing conditions, i.e. solvent cast or compression molding, induce different non-equilibrium microstructures and the MWCNTs modify the SBM organization only locally. We show that by fixing the processing procedure we are able to obtain samples with reproducible microstructure and properties. The electrical conductivity thresholds of these composites are lower than 1 wt.%. The reinforcing effect of the MWCNTs measured by dynamical mechanical analysis is mainly related to the SBM microstructures of the matrix and to the MWCNT dispersion quality.  相似文献   

3.
The mechanical and electrical properties of poly(ether ether ketone) (PEEK)/single-walled carbon nanotube (SWCNT) composites with polysulfones as compatibilizers have been analyzed. Dynamic mechanical studies reveal that these composites exhibit considerably higher storage modulus and glass transition temperature than non-compatibilized samples. Tensile tests indicate a non-linear growth in the Young’s modulus and strength with increasing SWCNT loading, related to changes in the degree of crystallinity of the composites. The moduli of samples with very low CNT content exceed the predictions by the rule of mixtures, whilst at higher concentrations fall slightly below the theoretical values. The addition of the polysulfones increases the stiffness and toughness of the composites, attributed to an improved filler dispersion and stronger matrix-reinforcement interfacial adhesion. Fractography analyses suggest that these compatibilizers favor the ductile deformation of the matrix. The electrical and thermal conductivities of the composites decrease slightly in the presence of the polysulfones, albeit are well above the values of pure PEEK. Enhanced properties are found for samples including wrapped laser-grown SWCNTs. The overall mechanical performance of the compatibilized composites is suitable for use in lightweight structural applications, particularly for the aeronautic industry.  相似文献   

4.
Y.T. Sung  K.H. Song  H.S. Lee  J. Joo 《Polymer》2006,47(12):4434-4439
Rheological and electrical properties of the polycarbonate (PC)/multi-walled carbon nanotube (MWNT) were studied. The MWNT was funtoinalized by treating with the hydrogen peroxide (H2O2). The H2O2 treated MWNT was dried by thermal and freeze drying methods. From the morphological studies, the degree of entanglement of the MWNT was decreased after treating with the H2O2. For the H2O2 treated MWNT (thermal drying), the length of the MWNT was shortened compared that of the H2O2 treated MWNT (freeze drying). The rheological and electrical properties of the PC/MWNT (H2O2 treated) composites increased compared that of the PC/MWNT (untreated) composites. Also, the electrical conductivity showed higher value for the PC/MWNT (H2O2 treated, freeze drying) composites compared that of the PC/MWNT (H2O2 treated, thermal drying) composites. From the results of the morphological, rheological, and electrical properties of the PC/MWNT composites, it is suggested that the electrical and rheological properties of the PC/MWNT composites are affected by the MWNT-MWNT network structure, which is related with the MWNT morphologies such as the degree of aggregation and aspect ratio of the MWNT.  相似文献   

5.
6.
Carbon nanotube reinforced polymer composites may provide a unique option for the aviation industry due to their high strength-to-weight ratio and multifunctionality. Specifically their electrical conductivity and consequent shielding capabilities can be strongly enhanced by featuring vertically aligned nanotube arrays in the polymer composites. We report here a detailed study of the electrical transport mechanisms within aligned carbon nanotube reinforced polymer composites. The experimental part of our investigation relies on extensive use of both macroscopic and high spatial resolution experimental techniques by which we shed light on the factors dominating the electrical transport, namely the contact resistance which depends on the wetting properties of CNT–metal interface, and the resistance at point-junctions which scale with the size of interconnecting tubes. Our modeling effort well describes our experimental observations and reveals the key parameters to achieve high nanocomposite intrinsic electrical conductivity and to reduce its interfacial contact resistance.  相似文献   

7.
A study on the mechanical and thermo-mechanical properties of carbon nanotube (CNT) reinforced nanocomposites is presented in this article. Mori–Tanaka method is used for modeling the effective stiffness and coefficient of thermal expansion. Regression formulas were developed to describe the effects of CNT orientation, aspect ratio, and CNT volume fraction. Given the statistical distributions of CNT orientations and aspect ratios, the effective properties can be conveniently derived by numerical integration using these formulas.  相似文献   

8.
Polyphenylene sulfide (PPS)/multiwalled carbon nanotube (MWCNT) composites were prepared using a melt‐blending procedure combining twin‐screw extrusion with centrifugal premixing. A homogeneous dispersion of MWCNTs throughout the matrix was revealed by scanning electron microscopy for the nanocomposites with MWCNT contents ranging from 0.5 to 8.0 wt %. The mechanical properties of PPS were markedly enhanced by the incorporation of MWCNTs. Halpin‐Tsai equations, modified with an efficiency factor, were used to model the elastic properties of the nanocomposites. The calculated modulus showed good agreement with the experimental data. The presence of the MWCNTs exhibited both promotion and retardation effects on the crystallization of PPS. The competition between these two effects results in an unusual change of the degree of crystallinity with increasing MWCNT content. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
10.
The preparation and electrical characterization of a new class of composite layers formed by dispersing single-walled carbon nanotubes (SWNT) in 1,8-diaminonaphthalene polymer, the poly(1,8-DAN), are described.The material was grown on the surface of Pt plates by electropolymerization of 1,8-diaminonaphthalene (1,8-DAN) monomer in the presence of nanotubes. This synthesis method allows the simultaneous deposition of both the host polymer matrix and the filler nanotubes. A series of composite films were prepared using untreated nanotubes as well as nanotubes treated with KOH, HNO3 and HNO3/H2SO4 solutions. The structural features of the nanotubes and of the films produced have been investigated using Raman spectroscopy. Insight into the nature of nanotube dispersion and nanotube-polymer association was gained by AFM and STM analysis and by FE-SEM inspection after removing the outermost portion of composite films.The charge transport in composite films is found to be strongly enhanced by the nanotube insertion. Depending on the SWNTs processing, currents up to 30 mA, higher by a factor of about 140 than those of the pure poly(1,8-DAN) films, were measured with an applied voltage of 250 mV.  相似文献   

11.
Intrinsic and scale-dependent properties of carbon nanotubes (CNTs) have led aligned CNT architectures to emerge as promising candidates for next-generation multifunctional applications. Enhanced operating regimes motivate the study of CNT-based aligned nanofiber carbon matrix nanocomposites (CNT A-CMNCs). However, in order to tailor the material properties of CNT A-CMNCs, porosity control of the carbon matrix is required. Such control is usually achieved via multiple liquid precursor infusions and pyrolyzations. Here we report a model that allows the quantitative prediction of the CNT A-CMNC density and matrix porosity as a function of number of processing steps. The experimental results indicate that the matrix porosity of A-CMNCs comprised of ∼1% aligned CNTs decreased from ∼61% to ∼55% after a second polymer infusion and pyrolyzation. The model predicts that diminishing returns for porosity reduction will occur after 4 processing steps (matrix porosity of ∼51%), and that >10 processing steps are required for matrix porosity <50%. Using this model, prediction of the processing necessary for the fabrication of liquid precursor derived A-CMNC architectures, with possible application to other nanowire/nanofiber systems, is enabled for a variety of high value applications.  相似文献   

12.
We describe a novel sol-gel based approach for producing aluminoborosilicate glass composites containing continuous, aligned carbon nanotubes. The process involves the production of aligned carbon nanotubes (ACNT) via aerosol chemical vapour deposition (CVD), followed by infiltration of the ACNT with aluminoborosilicate sol. The advantages of this process are three fold: (1) aerosol CVD is an efficient method of producing clean, aligned arrays of CNTs, (2) sol-gel chemistry provides a simple route to infiltration of the ACNTs, and (3) carbon nanotube (CNT) agglomeration problems associated with CNT composites are circumvented. ACNTs (carpets) with heights of up to 4.4 mm were grown with areas of 10 mm × 20 mm for composite fabrication. The composite showed extensive pullout of the CNTs on a fracture surface and improved thermal and electrical conductivities of 16 Wm−1 K−1 and 5-8 × 102 S m−1 respectively compared with only 1.2 W m−1 K−1 and 10−13 S m−1 for the monolithic glass.  相似文献   

13.
14.
We present a new method for synthesis of thick, self-standing porous carbon electrodes with improved physicochemical properties and unique porous structure. The synthesis is based on the use of vertically aligned carbon nanotubes (VACNT) as templates for polymer-based activated carbon materials. The VACNT template enables the production of 1 mm thick, binder-free electrodes with high capacity values even at high rates (>160 Fg−1 at more than 1 Ag−1 for 1 mm thick electrode), and very good stability upon cycling. The electrochemical performance after more than 50,000 cycles, the pore characterization by adsorption isotherms, and the structural analysis of the composite electrode are also reported.  相似文献   

15.
Pyrolytic carbon (PyC) was deposited on surfaces of carbon nanotubes (CNT) which were grown on carbon fibers to optimize the interfacial bonding between CNT/Matrix. The PyC protected CNT effectively and weakened CNT/Matrix interfacial strength, leading to long pull-out of CNT compared to brittle fracture of uncoated CNT. The well-protected CNT have more effective contributions to the improvement of mechanical properties. A “fiber-PyC/SiC-(CNT + PyC)-(CNT + SiC)” structure was formed using this process.  相似文献   

16.
Nanocomposites using copper nanowires (CuNWs) or carbon nanotubes (CNTs) as fillers with polypropylene (PP) as matrix were prepared by miscible solution mixing and precipitation method. Comparative studies on electrical conductivity and electromagnetic interference shielding properties were reported. On the conductivity curve, a plateau was found for both CuNW/PP composite and CNT/PP composite. The plateaus are located at a different concentration range for each composite type: for CuNW/PP composite, it is between 0.8 and 1.7 vol %, while for CNT/PP composite the plateau occurs in a narrower range between 0.4 and 0.6 vol %. The shielding effectiveness (SE) increases with increased concentration of fillers. CNT/PP composite has higher SE at concentrations less than 2 vol %; the two curves cross near 10 dB at this point and at concentrations higher than 2 vol %, CuNW/PP composite has higher SE. © 2014 American Institute of Chemical Engineers AIChE J, 61: 296–303, 2015  相似文献   

17.
Multi-walled carbon nanotube (MWCNT)/C/polystyrene (PS) composite materials were prepared by in situ polymerization of monomer in preformed MWCNT/C foams. MWCNT/C foams were preformed using polyurethane foam as template. The preformed MWCNT/C foams had a more continuous conductive structure than the carbon nanotube networks formed by free assembly in composites. The structure of the MWCNT/C foam network was characterized with scanning electron microscopy. The MWCNT/C/PS composites have an electric conductivity higher than 0.01 S/cm for a filler loading of 1 wt.%. Enhancement of thermal conductivity and mechanical properties by the preformed MWCNT/C foam were also observed.  相似文献   

18.
Carbon nanotubes (CNTs) are a promising material for the fabrication of biomimetic dry adhesives. The dimensions of single CNTs are in the range of those of terminal elements of biological dry hairy adhesion systems, such as the setal branches on the toe of the gecko. Here, the tribological properties of densely packed arrays of vertically aligned and up to 1.1 mm long multi-walled CNTs (VACNTs) synthesized by chemical vapor deposition are examined. The coefficient of friction μ is as high as 5–6 at the first sliding cycle, and decreases down to stable values between 2 and 3 at the fourth to fifth sliding cycles. Such high values of μ can only be explained by the strong contribution of adhesion induced by applied shear force. After the tests, wear-induced deformations of the VACNT surface are observed, which strongly depend on the amount of normal force applied during the friction experiments. Interestingly, the plastic deformation of the VACNTs does not significantly affect μ after a preconditioning by a few sliding cycles. However, a strong decrease of μ during the initial wear cycles has to be taken into account for the development of applications, such as non-slip surfaces and pick-and-place techniques for manufacturing.  相似文献   

19.
This study focuses on the structural changes of vertically aligned carbon nanotube (CNT) arrays while measuring their adhesive properties and wetting behaviour. CNT forests grown by chemical vapor deposition with a height of ~ 100 µm, an outer CNT diameter of ~ 10 nm and a density of the order of ~ 1010 CNTs/cm2 show an average adhesion of 4 N/cm2 when pressed against a glass surface. The applied forces lead to the collapse of the regular CNT arrays which limits their reusability as functional dry adhesives. Goniometric water contact angle (CA) measurements on CNT forests show a systematic decrease from an initial value of ~ 126° to a final CA similar to highly orientated graphite. Environmental scanning electron microscopy shows that this loss of hydrophobicity is due to an evaporation induced compaction of CNTs together with the loss of their vertical alignment. We observe the formation of cellular patterns for controlled drying.  相似文献   

20.
《Ceramics International》2016,42(4):4984-4992
The nanocomposite was produced via phenolic resin infiltrating into a carbon nanotube (CNT) buckypaper preform containing B4C fillers and amorphous Si particles followed by an in-situ reaction between resin-derived carbon and Si to form SiC matrix. The buckypaper preform combined with the in-situ reaction avoided the phase segregation and increased significantly the volume fraction of CNTs. The nanocomposites prepared by this new process were dense with the open porosities less than 6%. A suitable CNT–SiC bonding was achieved by creating a B4C modified interphase layer between CNTs and SiC. The hardness increased from 2.83 to 8.58 GPa, and the indentation fracture toughness was estimated to increase from 2.80 to 9.96 MPa m1/2, respectively, by the reinforcing effect of B4C. These nanocomposites became much more electrically conductive with high loading level of CNTs. The in-plane electrical resistivity decreased from 124 to 74.4 μΩ m by introducing B4C fillers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号