首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(amide imide)/multiwalled carbon nanotube composites were in situ polymerized through Yamazaki–Higashi phosphorylation method, and the carboxylated multiwalled carbon nanotubes are added in the post-reaction stage. The good dispersion of multiwalled carbon nanotubes in the poly(amide imide) matrix was achieved even at 20?wt% nanotube loading. The electrical conductivity reached 33?S?m?1; meanwhile, the tensile strength and Young’s modulus were 106MPa and 2.52?GPa, respectively. These excellent properties were contributed to the good dispersion of nanotubes and strong multiwalled carbon nanotubes–poly(amide imide) interfacial adhesions. We also demonstrate that the incorporation of multiwalled carbon nanotubes depressed the crystallization characteristics of poly(amide imide) but improve its thermal stability.  相似文献   

2.
Multi-wall carbon nanotubes (MWCNTs) with lengths of 0.65–1.3 mm were used to fabricate aligned and continuous MWCNT/bismaleimide composites. We found that longer CNTs resulted in higher thermal and electrical conductivities of the composites. The tensile strength and Young’s modulus, however, exhibited no CNT length dependency. Investigation of the CNT morphology by transmission electron microscopy revealed that the average nanotube diameter and wall number also increased with the CNT length, while the aspect ratio remained nearly unchanged. The structural changes significantly affected the phonon and electron transport in the composite structure, but the interplay of increased CNT length and diameter led to no appreciable change in the mechanical properties of the composites.  相似文献   

3.
Abstract

The effect of carbon nanotube (CNT) integration in polymer matrixes (two-phase) and fibre reinforced composites (three-phase) was studied. Simulations for CNT/polymer composites (nanocomposites) and CNT/fibre/polymer composites (multiscale) were carried out by combining micromechanical theories applied to nanoscale and woven fibre micromechanic theories. The mechanical properties (Young’s modulus, Poisson’s ratio and shear modulus) of a multiscale composite were predicted. The relationships between the mechanical properties of nano- and multiscale composite systems for various CNT aspect ratios were studied. A comparison was made between a multiscale system with CNTs infused throughout and one with nanotubes excluded from the fabric tows. The mechanical properties of the composites improved with increased CNT loading. The influence of CNT aspect ratio on the mechanical properties was more pronounced in the nanocomposites than in the multiscale composites. Composites with CNTs in the fibre strands generated more desirable mechanical properties than those with no CNTs in the fibre strands.  相似文献   

4.
Silicon oxycarbides with varying compositions were investigated concerning their elastic and plastic properties. Additionally, the impact of thermal annealing on their elastic properties was assessed. Phase separation of SiOC seems to have no significant impact on Young’s modulus (high values of β-SiC compensate the low values of the vitreous silica matrix) and hardness. However, it leads to an increase in Poisson’s ratio, indicating an increase in the atomic packing density. The phase composition of SiOC significantly influences Young’s modulus, hardness, brittleness and strain-rate sensitivity: the amount of both β-SiC and segregated carbon governs Young’s modulus and hardness, whereas the fraction of free carbon determines brittleness and strain-rate sensitivity. Thermal annealing of SiOC glass-ceramics leads to an increase in Young’s modulus. However, the temperature sensitivity of Young’s modulus and Poisson’s ratio is not affected, indicating the glassy matrix being stable during thermal annealing. A slightly improved ordering of the segregated carbon and the β-SiC nanoparticles upon thermal annealing was observed. It is suggested that this is responsible for the increase in Young’s modulus.  相似文献   

5.
采用酸处理和聚乙烯亚胺(PEI)表面修饰两种方法对多壁碳纳米管(MWCNTs)进行改性,将改性碳纳米管与聚酰胺11(PA11)熔融共混,制备了聚酰胺11/酸刻蚀碳纳米管(PA11/a-MWCNTs)和聚酰胺11/聚乙烯亚胺接枝碳纳米管(PA11/PEI-MWCNTs)复合材料,并通过扫描电子显微镜(SEM)、热重分析仪...  相似文献   

6.
A molecular dynamics (MD) simulations study is performed on Thrower–Stone–Wales (TSW) defected carbon nanotube (CNT)/polypropylene (PP) composites. We identify the degradation of the CNT and the improvement of the interfacial adhesion between the defected CNTs and PP molecules considering different CNTs with different numbers of TSW defects. By embedding the CNTs into a PP matrix, the effect of the TSW defects on the transversely isotropic elastic stiffness of polymer composites is calculated by MD simulations. Even if the TSW defects degrade the elastic properties of the CNTs, the transverse Young’s modulus and the transverse and longitudinal shear moduli of the composites increase due to the stronger interfacial adhesion between the defected CNTs and matrix, whereas the longitudinal Young’s modulus of the composites decreases. To elucidate the improved interfacial load transfer between the CNTs and the matrix, random polymer chain crystallization onto the surface of CNTs is simulated. The simulation shows that PP chains are wrapped more uniformly onto the surfaces of defected CNTs than onto the pristine CNT. The non-bond adhesion energy between the PP chains and the defected CNTs is greater than that between the PP chains and the pristine CNT.  相似文献   

7.
The continuous highly aligned hybrid carbon nanofibers (CNFs) with different content of acid-oxidized multi-walled carbon nanotubes (MWCNTs) were fabricated through electrospinning of polyacrylonitrile (PAN) followed by a series of heat treatments under tensile force. The effects of MWCNTs on the micro-morphology, the degree of orientation and ordered crystalline structure of the resulting nanofibers were analyzed quantitatively by diversified structural characterization techniques. The orientation of PAN molecule chains and the graphitization degree in carbonized nanofibers were distinctly improved through the addition of MWCNTs. The electrical conductivity of the hybrid CNFs with 3 wt% MWCNTs reached 26 S/cm along the fiber direction due to the ordered alignment of MWCNTs and nanofibers. The reinforcing effect of hybrid CNFs in epoxy composites was also revealed. An enhancement of 46.3% in Young’s modulus of epoxy composites was manifested by adding 5 wt% hybrid CNFs mentioned above. At the same time, the storage modulus of hybrid CNF/epoxy composites was significantly higher than that of pristine epoxy and CNF/epoxy composites not containing MWCNTs, and the performance gap became greater under the high temperature regions. It is believed that such a continuous hybrid CNF can be used as effective multifunctional reinforcement in polymer matrix composites.  相似文献   

8.
Dense and homogeneous multi-walled carbon nanotube/metal composites are prepared by powder metallurgy. The distribution of the nano-reinforcements in the matrix is studied by scanning electron microscopy and Raman spectroscopy. The mechanical properties of the composites are determined by means of static tensile tests and Vickers micro-hardness measurements. We show that a homogeneous dispersion of the nanotubes at the micron scale is required in order to improve the mechanical properties of the metal matrix composite. This can be achieved using ball-milling through the mechanisms of plastic deformation and cold-welding. Accordingly, we report significant improvements to the mechanical properties of composites prepared with a high-performance aluminium alloy AA5083 matrix.  相似文献   

9.
A series of polyamide 1010 (PA1010 or nylon 1010) and multiwalled carbon nanotubes (MWNTs) composites were prepared by in situ polymerization of carboxylic acid-functionalized MWNTs (MWNT-COOH) and nylon monomer salts. Mechanical tensile tests and dynamic mechanical analysis (DMA) show that the Young modulus increases as the content of the nanotubes increases. Compared with pure PA1010, the Young's modulus and the storage modulus of MWNTs/PA1010 in situ composites are significantly improved by ca. 87.3% and 197% (at 0 °C), respectively, when the content of MWNTs is 30.0 wt%. The elongation at break of MWNTs/PA1010 composites decreases with increasing proportion of MWNTs. For the composites containing 1.0 wt% MWNTs, the Young modulus increases by ca. 27.4%, while the elongation at break only decreases by ca. 5.4% as compared with pure PA1010 prepared under the same experimental conditions. Compared with mechanical blending of MWNTs with pure PA1010, the in situ-prepared composites exhibit a much higher Young's modulus, indicating that the in situ polycondensation method improves mechanical strength of nanocomposites. Scanning electron microscopy (SEM) imaging showed that MWNTs on the fractured surfaces of the composites are uniformly dispersed and exhibit strong interfacial adhesion with the polymer matrix. Moreover, unique crystallization and melting behaviors for MWNTs/PA1010 in situ composites are observed using a combination of differential scanning calorimetry (DSC) and X-ray diffraction methods. It was shown that only the α-form crystals are observed in our MWNTs/PA1010 in situ composites. This result is quite different from PA1010/montmorillonite and PA6-clay composites, where both of α- and γ-form crystals were found.  相似文献   

10.
A series of nanocomposites based on a new semi-crystalline polyimide (PI) and multi-walled carbon nanotubes (MWCNTs) were prepared by in situ polymerization. The TEM measurement reveals the improved dispersion of carboxylic acid-functionalized MWCNTs (COOH-MWCNTs) in semi-crystalline PI compared with pristine MWCNTs. The TGA analysis show that the concentration of carboxylic acid groups on the surface of nanotubes is about 4.34 wt%. The FT-IR spectroscopy analysis indicate that the imide rings of the PI interact non-covalently with nanotubes. The Polarized optical microscopy observation reveals significant morphology evolution in semi-crystalline PI induced by MWCNTs. The SEM micrographs suggest the strong interfacial interaction between COOH-MWCNTs and PI main chains, and significant changes in the fracture surfaces morphology. The WAXRD measurements reveal that COOH-MWCNTs promote the semi-crystalline PI crystallinity and structure change. COOH-MWCNTs can more efficiently improve the mechanical and thermal properties of resulting nanocomposites than pristine MWCNTs. COOH-MWCNT/PI nanocomposites show increases of Young’s modulus and yield strength, as high as 20–30 %, without sacrificing the elongation at break at loadings of 0.5 wt% nanotubes. Furthermore, with increasing the loadings of COOH-MWCNTs to 1.0 wt%, Young’s modulus and yield strength decrease due to nanotube aggregation, but elongation at break increase about 46 %. An abrupt increase of elongation at break in pristine MWCNT/PI nanocomposites was also registered at nanotubes loadings increasing from 0.5 to 1 wt%. These results indicate that the properties of semi-crystalline PI nanocomposites reinforced with carbon nanotubes are not only determined by the dispersion of nanotubes in the PI matrix and their interfacial interactions, but also by the crystalline phase morphology evolution in the PI matrix.  相似文献   

11.
ABSTRACT

In this work, characterization of polymer matrix composites was carried out. Thermoplastic polymers were used as a matrix. Nondestructive Young’s modulus values were compared with the destructive values. Differences between the destructive and nondestructive values are less than 10%. Reinforcements increased Young’s modulus. The principal strain values of the glass fiber-reinforced polymethylmethacrylate (PMMA) composites were higher than that of graphite-reinforced PMMA composites. Radiography and tomography methods were used for the characterization. Specimens consisted of homogeneously distributed reinforcements. Imaging behavior was appropriate. There are no cracks or pores according to radiography. Specimens consisted of homogeneously distributed reinforcements.  相似文献   

12.
In this work, the effects of carbon nanotube-modified epoxy and carbon nanotube-enriched sizing agent on the tensile properties and failure mode of unidirectional carbon fiber/epoxy composites were investigated. Laminates of carbon fiber/epoxy composites at different concentrations of carbon nanotube and sizing agent were fabricated by hand layup vacuum bagging process. Scanning electron microscopy analysis was conducted to unveil the relation between the macroproperties and the composites’ microstructure. Experimental results showed that the carbon nanotube-modified epoxy/carbon fiber composite showed 20% enhancements in the Young’s modulus compared to the pristine epoxy/carbon fiber composite. The scanning electron microscopy analysis of the fracture surfaces revealed that incorporating carbon nanotube into the epoxy matrix with utilizing the vacuum improves the interfacial bonding and minimizes the voids that act as crack initiators. This microstructure enhances the interfacial shear strength and load transfer between the matrix and the fabrics and consequently the tensile characteristics of the formulated composite.  相似文献   

13.
Biodegradable poly(butylene succinate)/carbon nanotubes nanocomposites were prepared by melt mixing process, and the influence of carbon nanotubes on the properties of the nanocomposites was investigated. Differential scanning calorimetry showed that crystallization temperature (Tc) increase with increasing carbon nanotube content. Improvement of tensile modulus was observed by the addition of carbon nanotubes compared with pure poly(butylene succinate). Electrical conductivity showed that conductivity of polybutylene succinate/carbon nanotube composites increased with addition of carbon nanotube content. The storage moduli of polybutylene succinate/carbon nanotube composites are higher than the neat polybutylene succinate. The processability of polybutylene succinate/carbon nanotubes composites was improved and more pronounced in higher content of carbon nanotubes. POLYM. COMPOS., 31:1309–1314, 2010. © 2009 Society of Plastics Engineers  相似文献   

14.
以应用于某新能源电动汽车的复合材料层合板为研究对象,利用万能试验机和静态应变测试分析系统等提出了可靠的复合材料层合板准静态拉伸和压缩力学性能试验测定方法,从而为复合材料结构在汽车轻量化中的设计和应用提供了试验依据。该层合板结构采用±45°交叉铺层方法,由2层碳纤维、1层芳纶纤维和2层玻璃纤维层叠构成。试验结果表明,该复合材料层合板在准静态拉伸时呈现沿±45°方向和层间分离挤压的断裂失效模式,这与其内部纤维铺层方向是一致的。同时,由于在复合材料板材中加入了增韧和板材失效时起连接作用的芳纶纤维和玻璃纤维铺层,该复合材料层合板的整体力学性能较常见碳纤维增强复合材料板材,其弹性模量和强度性能均有所降低。  相似文献   

15.
The processing of carbon nanotube based nanocomposites is one of the fastest growing areas in materials research due to the potential of significantly changing material properties even at low carbon nanotube concentrations. The aim of our work is to study the curing and thermomechanical behavior of carbon nanotube/epoxy nanocomposites that are critical from an application standpoint. Multiwall carbon nanotubes–epoxy composites are prepared by solvent evaporation based on a commercially available epoxy system and functionalized multiwalled carbon nanotubes. Three weight ratio configurations are considered (0.1, 0.5, and 1.0 wt%) and compared to both the neat epoxy to investigate the nano‐enrichment effect. We focus here on the modification of the curing behavior of the epoxy polymer in the presence of carbon nanotubes. It has been observed that introducing the multiwall carbon nanotubes delays the polymerization process as revealed by the modification of the activation energy obtained by differential scanning calorimetry. The viscoelastic response of the nanocomposites was studied from the measurements of storage modulus and the loss factor using dynamic mechanical analysis to evaluate the effect of the interface in each matrix/carbon nanotube system with changing matrix mobility. These measurements provide indications about the increase in the storage modulus of the composites, shift in the glass transition temperature due to the restriction of polymer chain movement by carbon nanotubes. POLYM. COMPOS., 35:441–449, 2014. © 2013 Society of Plastics Engineers  相似文献   

16.
By correlating the curvature of carbon nanotubes to the orientation of fibers in a polymer, the effect of the curvature of nanotubes on the tensile modulus of carbon‐nanotube‐reinforced polymer composites was investigated with a numerical simulation method. The simulation results showed that the tensile modulus of a nanotube‐reinforced composite drops sharply when the nanotubes diverge from their orientation in the axial direction, and the presence of curved nanotubes in the polymer matrix significantly decreases the modulus of the composite. This finding could explain, partly, why in most cases, the predicted tensile modulus of a carbon‐nanotube‐reinforced composite, based on the assumption that the nanotubes are fully isolated and aligned in the polymer matrix, is much higher than the value obtained from experiments. Copyright © 2004 Society of Chemical Industry  相似文献   

17.
A straightforward method for measuring Young’s modulus of single carbon nanocoils (CNC) is proposed. Acting as a 1D nano-oscillator, a CNC cantilever was stimulated to vibrate under an alternating electric field. Using a classical continuum model, a formula that accounts for the frequency response of vibration was deduced, and this formula was used to accurately determine the resonance frequency of the CNC. Young’s modulus was calculated from the resonance frequency using a theory based on material mechanics. It was found that Young’s modulus increased in the longitudinal direction of the coils both in the vibrating and tensile measurements, which resulted from the decline of graphitization during the growth of the CNCs.  相似文献   

18.
We have used the Mori–Tanaka theory to develop a new micromechanical model to predict the Young’s modulus for carbon fibres, taking into account both the crystallites and amorphous components of the fibre structure. In order to follow the dependence of the mechanical properties of the fibres upon nanostructure, we prepared five different types of PAN-based fibres, with Young’s moduli in the range 200–500 GPa. The axial elastic constants of the bulk carbon fibres were measured directly by X-ray diffraction and an axial shear modulus of about 20 GPa was calculated. The elastic constants of the amorphous carbon in the fibres and the volume fractions of crystallites were estimated. It was found that the amorphous modulus was approximately 200 GPa and the volume fractions of crystallites were 0.4–0.8, depending upon the nanostructure of the carbon fibres. Also, as it is known that the Raman G band shift rate per unit strain is related to the crystallite modulus, the data indicated a nearly constant value of 1.1 TPa. The results show clearly that the behavior of carbon fibres can be expressed through a composite mechanical model that assumes they consist of both crystalline and amorphous carbon components.  相似文献   

19.
This study develops a facile approach to fabricate adhesives consists of epoxy and cost-effective graphene platelets (GnPs). Morphology, mechanical properties, electrical and thermal conductivity, and adhesive toughness of epoxy/GnP nanocomposite were investigated. Significant improvements in mechanical properties of epoxy/GnP nanocomposites were achieved at low GnP loading of merely 0.5?vol%; for example, Young’s modulus, fracture toughness (K1C) and energy release rate (G1C) increased by 71%, 133% and 190%, respectively compared to neat epoxy. Percolation threshold of electrical conductivity is recorded at 0.58?vol% and thermal conductivity of 2.13?W m?1 K?1 at 6?vol% showing 4 folds enhancements. The lap shear strength of epoxy/GnP nanocomposite adhesive improved from 10.7?MPa for neat epoxy to 13.57?MPa at 0.375?vol% GnPs. The concluded results are superior to other composites or adhesives at similar fractions of fillers such as single-walled carbon nanotubes, multi-walled carbon nanotubes or graphene oxide. The study promises that GnPs are ideal candidate to achieve multifunctional epoxy adhesives.  相似文献   

20.
Pyrolytic carbon (PyC) coatings with different densities were produced by fluidized bed chemical vapor deposition under different deposition conditions. Their Young’s modulus and hardness were measured by nano-indentation, whereas the deformation behavior was studied through analyzing the force–displacement curves of the indentations. The deformation mechanism of PyC under indentation is attributed to the slip of the graphene planes, and its reversibility is discussed in terms of the defects of the microstructure. We observed a linear relationship between the density of PyC’s and their Young’s modulus and hardness, for densities lower than 1.9 g/cm3. Above this value, the mechanical properties were controlled by the amount of interstitial defects. Samples were also heat treated at 1800 °C and 2000 °C, and their changes in microstructure, hardness and Young’s modulus are discussed as a function of density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号