首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we examine the use of the amidoxime functional group grafted onto a hierarchical porous carbon framework for the selective capture and removal of carbon dioxide from combustion streams. Measured CO2/N2 ideal selectivity values for the amidoxime-grafted carbon were significantly higher than the pristine porous carbon with improvements of 65%. Though the overall CO2 capacity decreased slightly for the activated carbon from 4.97 mmol g−1 to 4.24 mmol g−1 after surface modification due to a reduction in the total surface area, the isosteric heats of adsorption increased after amidoxime incorporation indicating an increased interaction of CO2 with the sorbent. Total capacity was reproducible and stable after multiple adsorption/desorption cycles with no loss of capacity suggesting that modification with the amidoxime group is a potential method to enhance carbon capture.  相似文献   

2.
Highly microporous carbon spheres for CO2 adsorption were prepared by using a slightly modified one-pot Stöber synthesis in the presence of potassium oxalate. Formaldehyde and resorcinol were used as carbon precursors, ammonia as a catalyst, and potassium oxalate as an activating agent. The resulting potassium salt-containing phenolic resin spheres were simultaneously carbonized and activated at 800 °C in flowing nitrogen. Carbonization of the aforementioned polymeric spheres was accompanied by their activation, which resulted in almost five-time higher specific surface area and total pore volume, and almost four-time higher micropore volume as compared to analogous properties of the carbon sample prepared without the salt. The proposed synthesis resulted in microporous carbon spheres having the surface area of 2130 m2 g−1, total pore volume of 1.10 cm3 g−1, and the micropore volume of 0.78 cm3 g−1, and led to the substantial enlargement of microporosity in these spheres, especially in relation to fine micropores (pores below 1 nm), which enhance CO2 adsorption. These carbon spheres showed three-time higher volume of fine micropores, which resulted in the CO2 adsorption of 6.6 mmol g−1 at 0 °C and 1 atm.  相似文献   

3.
Yongde Xia  Yanqiu Zhu  Yi Tang 《Carbon》2012,50(15):5543-5553
Structurally well ordered, sulfur-doped microporous carbon materials have been successfully prepared by a nanocasting method using zeolite EMC-2 as a hard template. The carbon materials exhibited well-resolved diffraction peaks in powder XRD patterns and ordered micropore channels in TEM images. Adjusting the synthesis conditions, carbons possess a tunable sulfur content in the range of 1.3–6.6 wt.%, a surface area of 729–1627 m2 g?1 and a pore volume of 0.60–0.90 cm3 g?1. A significant proportion of the porosity in the carbons (up to 82% and 63% for surface area and pore volume, respectively) is contributed by micropores. The sulfur-doped microporous carbons exhibit isosteric heat of hydrogen adsorption up to 9.2 kJ mol?1 and a high hydrogen uptake density of 14.3 × 10?3 mmol m?2 at ?196 °C and 20 bar, one of the highest ever observed for nanoporous carbons. They also show a high CO2 adsorption energy up to 59 kJ mol?1 at lower coverages (with 22 kJ mol?1 at higher CO2 coverages), the highest ever reported for any porous carbon materials and one of the highest amongst all the porous materials. These findings suggest that S-doped microporous carbons are potential promising adsorbents for hydrogen and CO2.  相似文献   

4.
A series of renewable nitrogen-containing granular porous carbons with developed porosities and controlled surface chemical properties were prepared from poplar anthers. The preparation conditions such as pre-carbonization and activation temperatures and KOH amount significantly influence the structures and chemical compositions of the porous carbons, the CO2 adsorption capacities of which are highly dependent on their pore structures, surface areas, nitrogen contents and adsorption conditions. The sample with developed microporosity, especially with the pores between 0.43 and 1 nm and high nitrogen content shows high CO2 adsorption capacity at 1 bar and 25 °C. In contrast, when the adsorption pressure is higher than 5 bar, its CO2 adsorption capacity is dominated by its surface area, and more accurately by its pore volume. Irrespective of this, if the pressure was decreased to 0.1 bar, its CO2 capture ability is closely correlated to its nitrogen content but not to its porosity. By optimizing the preparation conditions, a porous carbon with a surface area of 3322 m2 g−1 and a CO2 adsorption capacity as high as 51.3 mmol g−1 at 50 bar and 25 °C was prepared.  相似文献   

5.
Carbons with high surface area and large volume of ultramicropores were synthesized for CO2 adsorption. First, mesoporous carbons were produced by soft-templating method using triblock copolymer Pluronic F127 as a structure directing agent and formaldehyde and either phloroglucinol or resorcinol as carbon precursors. The resulting carbons were mainly mesoporous with well-developed surface area, large total pore volume, and only moderate CO2 uptake. To improve CO2 adsorption, these carbons were subjected to KOH activation to enhance their microporosity. Activated carbons showed 2–3-fold increase in the specific surface area, resulting from substantial development of microporosity (3–5-fold increase in the micropore volume). KOH activation resulted in enhanced CO2 adsorption at 760 mmHg pressure: 4.4 mmol g−1 at 25 °C, and 7 mmol g−1 at 0 °C. This substantial increase in the CO2 uptake was achieved due to the development of ultramicroporosity, which was shown to be beneficial for CO2 physisorption at low pressures. The resulting materials were investigated using low-temperature nitrogen physisorption, CO2 sorption, and small-angle powder X-ray diffraction. High CO2 uptake and good cyclability (without noticeable loss in CO2 uptake after five runs) render ultramicroporous carbons as efficient CO2 adsorbents at ambient conditions.  相似文献   

6.
The preparation, characterization and CO2 uptake performance of N-doped porous carbon materials and composites derived from direct carbonization of ZIF-8 under various conditions are presented for the first time. It is found that the carbonization temperature has remarkable effect on the compositions, the textural properties and consequently the CO2 adsorption capacities of the ZIF-derived porous materials. Changing the carbonization temperature from 600 to 1000 °C, the composites and the resulting porous carbon materials possess a tuneable nitrogen content in the range of 7.1–24.8 wt%, a surface area of 362–1466 m2 g−1 and a pore volume of 0.27–0.87 cm3 g−1, where a significant proportion of the porosity is contributed by micropores. These N-doped porous composites and carbons exhibit excellent CO2 uptake capacities up to 3.8 mmol g−1 at 25 °C and 1 bar with a CO2 adsorption energy up to 26 kJ mol−1 at higher CO2 coverages. The average adsorption energy for CO2 is one of the highest ever reported for any porous carbon materials. Moreover, the influence of textural properties on CO2 capture performance of the resulting porous adsorbents has been discussed, which may pave the way to further develop higher efficient CO2 adsorbent materials.  相似文献   

7.
In this paper, a new boron chelating chitosan based polymer with multi-hydroxyl iminobis (propylene glycol) (IBPG) functions was prepared. A cross-linked chitosan (CCTS) with 2.70 mmol g−1 amine content was modified with excess amount of glycidol at pH 7 and boron chelating resin with IBPG functions (4.60 mmol g−1) was obtained. The boron chelating ability of the resulting resin was investigated under different experimental conditions (pH, foreign ions). This prepared material was evaluated by FT–IR spectra and UV spectra analysis. The IBPG modified CCTS resin was demonstrated to have a boron loading capacity of 2.2 ± 0.05 mmol g−1 within 45 min. Desorption and resin regeneration studies were carried out to determine the effectiveness of the synthesized resin with HCl and NaOH respectively. The adsorption test indicated that the chitosan based chelating resin with IBPG functions exhibited higher selectivity of boron (2.05 mmol g−1) in the presence of foreign ions especially Fe(III).  相似文献   

8.
Nitrogen-doped microporous carbons were fabricated by a simple chemical activation strategy in which chitosan and K2CO3 were employed as the precursor and activation agent, respectively. The textural and chemical properties of the porous carbons could be easily tuned by changing the ratio of K2CO3/chitosan and activation temperature. Due to their large pore volume, well-defined microporosity and relatively high nitrogen content, these porous carbons were applied as adsorbents for CO2 capture and demonstrated excellent CO2 uptake performances. In particular, the sample prepared at 635 °C with K2CO3/chitosan ratio = 2 shows a CO2 uptake as high as 3.86 mmol g−1 at 25 °C, 1 atm. Furthermore, the CO2 uptake remains almost constant in five consecutive adsorption–desorption cycles, indicating this material has great stability and recyclability as a CO2 sorbent. In addition, an extraordinary separation selectivity against N2 (CO2/N2 selectivity of ca. 21) was also observed.  相似文献   

9.
This work deals with the behavior of amine-grafted mesoporous silica (referred to as TRI-PE-MCM-41) throughout adsorption–desorption cycles in the presence of 5% CO2/N2 using various regeneration conditions in batch experiments. The criteria proposed to determine the optimum regeneration conditions are the working adsorption capacity, the rate of desorption and the change of adsorption capacity between consecutive cycles. Using a 23 factorial design of experiments, the impact on the performance of the adsorbent of different levels of temperature, pressure, and flow rate of purge gas during desorption was determined. It was found that all the parameters under study have a statistically significant influence on the working adsorption capacity, but only temperature is influential with respect to desorption rate. Regeneration using temperature swing was found to be attractive, as the highest CO2 adsorption capacity (1.95 mmol g?1) and the fastest desorption rate (9.82×10?4 mmol g?1 s?1) occurred when desorption was carried out at 150 °C. However, if vacuum is applied, regeneration can be achieved at a temperature as low as 70 °C with only a 13% penalty in terms of working adsorption capacity. It was also demonstrated that under the proper regeneration conditions, TRI-PE-MCM-41 is stable over 100 adsorption–desorption cycles.  相似文献   

10.
We report the preparation of micro-/mesoporous carbon monolithic xerogels by means of a two-step approach that comprises (1) hydrothermal carbonization of glucose in the presence of graphene oxide (GO) sheets as morphology-directing agents and (2) chemical activation of the resulting hydrothermal carbon (HTC) xerogels with KOH. The as-prepared HTC xerogels were made up of a random assembly of thin (<30 nm) carbon platelets, which were interpreted to arise via dehydration and condensation reactions of glucose at catalytically active (acidic) sites present on the surface of GO. The chemical activation afforded xerogels with large surface areas and pore volumes (up to ∼2000 m2 g−1 and 1.15 cm3 g−1, respectively) and a cellular morphology, which could be attributed to the combined effect of the activating agent and the unusual, compliant nature of the HTC xerogel. Additionally, the use of different activation conditions allowed fine-tuning the porous texture of the activated xerogels. Finally, the activated carbon xerogels displayed CO2 uptake capacities up to 4.9 mmol g−1 at 0 °C and 1 bar, as well as an efficient performance (between 600 and 700 mg g−1) in the adsorption of bulky dyes, thus demonstrating their application potential.  相似文献   

11.
N-enriched mesoporous carbon nanofibers (NMCNFs) were prepared by an electrospinning technique using graphitic carbon nitride (g-C3N4) nanosheets both as sacrificial template and N-doping source. The resultant NMCNF film has a high N-doping level of 8.6 wt% and a high specific surface area of 554 m2 g−1. When directly used as the electrode material for supercapacitor, the free-standing NMPCNF film shows a significantly improved capacitive performance including a higher specific capacitance (220 F g−1 at 0.2 A g−1) and a better rate capability (∼70% retention at 20 A g−1) than those of microporous carbon nanofiber film prepared using the same process without using g-C3N4 nanosheets (145 F g−1 at 0.2 A g−1 and ∼45% retention at 20 A g−1). Moreover, the NMCNFs show superior stability with only a ∼3% decrease of its initial capacitance after 1000 cycles at a high current density of 10 A g−1. More significantly, the energy density of a symmetrical supercapacitor (SC) based on the NMPCNF film can reach 12.5 Wh kg−1 at a power density of 72 W kg−1.  相似文献   

12.
The electrochemical performance of sodium-ion battery was improved by using functionalized interconnected N-doped carbon nanofibers (FN-CNFs) as the anode. The material was synthesized with polypyrrole as precursor by a simple method. The FN-CNF electrode exhibits excellent rate capability and cycling stability, delivering a capacity of 134.2 mAh g−1 at a high current density of 200 mA g−1 after 200 cycles and retains a capacity of 73 mAh g−1 even at an extremely high current density of 20 A g−1. The superior performance can be attributed to N-doped sites and functionalized groups, which are capable of capturing sodium ions rapidly and reversibly through surface adsorption and surface redox reactions.  相似文献   

13.
This study aimed at immobilizing Reactive Blue 2 (RB 2) dye in chitosan microspheres through nucleophilic substitution reaction. The adsorbent chemical modification was confirmed by Raman spectroscopy and thermogravimetric analysis. This adsorption study was carried out with Cu(II) and Ni(II) ions and indicated a pH dependence, while the maximum adsorption occurred around pH 7.0 and 8.5, respectively. The pseudo second-order kinetic model resulted in the best fit with experimental data obtained from Cu(II) (R = 0.997) and Ni(II) (R = 0.995), also providing a rate constant, k2, of 4.85 × 10−4 and 3.81 × 10−4 g (mg min)−1, respectively, thus suggesting that adsorption rate of metal ions by chitosan-RB 2 depends on the concentration of ions on adsorbent surface, as well as on their concentration at equilibrium. The Langmuir and Freundlich isotherm models were employed in the analysis of the experimental data for the adsorption, in the form of linearized equations. Langmuir model resulted in the best fit for both metals and maximum adsorption was 57.0 mg g−1 (0.90 mmol g−1) for Cu(II) and 11.2 mg g−1 (0.19 mmol g−1) for Ni(II). The Cu(II) and Ni(II) ions were desorbed from chitosan-RB 2 with aqueous solutions of EDTA and H2SO4, respectively.  相似文献   

14.
Cu was loaded on the S-doped TiO2 by electroless plating method. The prepared Cu/S–TiO2 exhibited high photocatalytic activity for hydrogen generation, and the yield is up to 7.5 mmol h 1 g 1cat in methanol solution. Their physical structure and chemical properties were characterized by UV–Vis, XRD, XPS and EXAFS. The copper species were CuO and Cu2O, and the sample showed excellent visible light absorption ability. Comparing with the sample prepared by chemical reducing method, the electroless plated copper on S–TiO2 was highly dispersed, which could facilitate photo-generated charges capture, transfer and separation.  相似文献   

15.
《Ceramics International》2017,43(3):3218-3223
In this work, the nanosized porous MnCo2O4 microspheres were synthesized by a hydrothermal method and their electrochemical behaviors were investigated based on a carbon supported composite air electrode for rechargeable sodium-air batteries. Under dry air test condition, the MnCo2O4/C air electrode demonstrated a stable working voltage of around 2.1 V vs. Na+/Na and a high initial discharge capacity of 7709.4 mA h g−1, based on the active material mass, at a current density of 0.1 mA cm−2. By a limit on the depth of discharge, the cell exhibited a specific capacity of 1000 mA h g−1 with a high cycling stability up to 130 cycles. The considerable electrocatalytic activity suggests that the as-proposed MnCo2O4 is a highly efficient catalyst as air electrode for rechargeable sodium-air batteries.  相似文献   

16.
Nitrogen-, phosphorous- and boron-doped carbon nanotubes (N-CNTs, P-CNTs and B-CNTs) were prepared by a chemical vapor deposition method using xylene as carbon source and aniline-NH3, triphenyl phosphine and triethyl borate as nitrogen, phosphorous and boron precursors, respectively. By tailoring the composition of reactants and reaction atmosphere, N-CNTs with nitrogen contents from 0% to 4.36% and P-CNTs with phosphorous contents from 0.55% to 5.14% were synthesized. N- and P-CNTs are active for the oxidation of cyclohexane in the liquid phase with molecular oxygen as oxidant. The highest mass-normalized activity, 761 mmol g−1 h−1, was achieved over N-CNTs synthesized from aniline in an NH3 atmosphere, while the highest surface-area-normalized activity, 28 mmol m−2 h−1, was observed over P-CNTs. B-doping does not improve the activity of CNTs. The effect of the number of nitrogen functionalities and defects was investigated to reveal the structure–activity relationship of the doped CNTs. By using the work function as an indicator of the electron donation of carbon, an exponential dependence of specific activity on work function was discovered for N- and P-CNTs, suggesting that the electron transfer on the surfaces of CNTs plays a central role in the CNT-catalyzed oxidation of cyclohexane.  相似文献   

17.
Electrically conducting adsorbent materials called Nyex™ 1000 & 2000 have already been reported with comparatively low adsorption capacity for various organic, biologically non-degradable and toxic compounds. Two composite adsorbents called CA1 & CA2 were synthesized using synthetic graphite-carbon black and expanded graphite-carbon black respectively. The aim of developing the new adsorbents was to increase the adsorption capacity along with good electrical properties. The developed adsorbents were characterized using N2 adsorption for specific surface area, Boehm surface titration for surface chemistry, bed electrical conductivity, laser size analyzer for average particle size, and scanning electron microscope (SEM) for particle morphology and shape. Then both the composite adsorbents were tested for the adsorption of acid violet 17 followed by an electrochemical regeneration. The adsorption study revealed that both the adsorbents had almost similar kinetic behavior with a significant increase in adsorption capacity for acid violet 17 (300 & 26 mg g−1 respectively) when compared with the adsorption capacity of previously developed electrically conducting materials called Nyex™ 1000 & 2000 (3.5 and 9 mg g−1 respectively). The composite adsorbent CA2 was successfully electrochemically regenerated by passing an electric charge of 138 C g−1 at a current density of 14 mA cm−2 for a treatment time of 60 min, whereas, the composite adsorbent CA1 could not be regenerated successfully. The regeneration efficiencies of CA2 were obtained at around 120% during five adsorption–regeneration cycles. The amount of actual charge passed of 138 C g−1 for achieving 100% regeneration efficiency was found to be similar with stoichiometrically calculated amount of charge. The amount of electrical energy required to oxidize each mg of adsorbed acid violet onto CA2 (24 J mg−1) was found to be significantly lower to that of Nyex™ 1000 & 2000 adsorbents (52 J mg−1 & 32 J mg−1 respectively).  相似文献   

18.
In response to the recent focus on reducing carbon dioxide emission, the preparation and characterization of organically functionalized materials for use in carbon capture have received considerable attention. In this paper the synthesis of amine modified layered double hydroxides (LDHs) via an exfoliation and grafting synthetic route is reported. The materials were characterized by elemental analysis (EA), powder x-ray diffraction (PXRD), diffuse reflectance infrared Fourier transform spectrometer (DRIFTS) and thermogravimetric analysis (TGA). Adsorption of carbon dioxide on modified layered double hydroxides was investigated by TGA at 25–80 °C. 3-[2-(2-Aminoethylamino) ethylamino]propyl-trimethoxysilane modified MgAl LDH showed a maximum CO2 adsorption capacity of 1.76 mmol g?1 at 80 °C. The influence of primary and secondary amines on carbon dioxide adsorption is discussed. The carbon dioxide adsorption isotherms presented were closely fitted to the Avrami kinetic model.  相似文献   

19.
A carbon material consisting of hollow carbon spheres anchored on the surface of carbon nanotubes (CNT–HCS) has been synthesized by an easy chemical vapor deposition process using a CNT–MnO2 hybrid as template. An electrode made of this material exhibits a maximum specific capacitance of 201.5 F g−1 at 0.5 A g−1 and excellent rate performance (69% retention ratio at 20 A g−1). It has impressive cycling stability with 90% initial capacitance retained after 5000 cycles at 5 A g−1 in 6 mol L−1 KOH. Symmetric supercapacitors based on CNT–HCS achieve a maximum energy density of 11.3 W h kg−1 and power density of 11.8 kW kg−1 operated within a wide potential range of 0–1.6 V in 1.0 mol L−1 Na2SO4 solution.  相似文献   

20.
A porous tin peroxide/carbon (SnO2/C) composite electrode coated with an amorphous carbon layer is prepared using a facile method. In this electrode, spherical graphite particles act as supporter of electrode framework, and the interspace among particles is filled with porous amorphous carbon derived from decomposition of polyvinylidene fluoride and polyacrylonitrile. SnO2 nanoparticles are uniformly embedded in the porous amorphous carbon matrix. The pores in amorphous carbon matrix are able to buffer the huge volume expansion of SnO2 during charge/discharge cycling, and the carbon framework can prevent the SnO2 particles from pulverization and re-aggregation. The carbon coating layer on the outermost surface of electrode can further prevent porous SnO2/C electrode from contacting with electrolyte directly. As a result, the repeated formation of solid electrolyte interface is avoided and the cycling stability of electrode is improved. The obtained SnO2/C electrode presents an initial coulombic efficiency of 77.3% and a reversible capacity of 742 mA h g−1 after 130 cycles at a current density of 100 mA g−1. Furthermore, a reversible capacity of 679 mA h g−1 is obtained at 1 A g−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号