首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AlI3 synthesized by I2 and Al in ethanol was used as reductive agent to directly obtain flexible reductive graphene oxide (RGO) films with high conductivity of 5320 S/m from graphene oxide (GO) films at a low temperature of 80 °C. This reductive method has provided a low-cost and effective route for large-scale production of graphene with high catalytic activity. Structural evolution during the reduction of GO was studied by Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. The RGO films served as counter electrode exhibited high electrochemical activity.  相似文献   

2.
Superparamagnetic Fe3O4 nanoparticles were anchored on reduced graphene oxide (RGO) nanosheets by co-precipitation of iron salts in the presence of different amounts of graphene oxide (GO). A pH dependent zeta potential and good aqueous dispersions were observed for the three hybrids of Fe3O4 and RGO. The structure, morphology and microstructure of the hybrids were examined by X-ray diffraction, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, Raman and X-ray photoelectron spectroscopy. TEM images reveal lattice fringes (d311 = 0.26 nm) of Fe3O4 nanoparticles with clear stacked layers of RGO nanosheets. The textural properties including the pore size distribution and loading of Fe3O4 nanoparticles to form Fe3O4–RGO hybrids have been controlled by changing the concentration of GO. An observed maximum (~10 nm) in pore size distribution for the sample with 0.25 mg ml?1 of GO is different from that prepared using 1.0 mg ml?1 GO. The superparamagnetic behavior is also lost in the latter and it exhibits a ferrimagnetic nature. The electrochemical behavior of the hybrids towards chromium ion was assessed and a novel electrode system using cyclic voltammetry for the preparation of an electrochemical sensor platform is proposed. The textural properties seem to influence the electrochemical and magnetic behavior of the hybrids.  相似文献   

3.
Reduced graphene oxide (RGO)-supported platinum (Pt) catalyst was prepared by simple ethylene glycol (EG) reduction and used for hydrogenation of nitroarenes. Characterizations showed that EG as a reductant exhibited more advantages than the widely used hydrazine hydrate to fabricate monodispersed, small sized Pt nanoparticles on the surface of RGO. The yield of aniline over the Pt/RGO-EG catalyst reached 70.2 mol-AN/(mol-Pt min) at 0 oC, which is 12.5 and 19.5 times higher than that of multi-walled carbon nanotube- and active carbon-supported Pt catalysts, respectively. When the reaction temperature was increased to 20 oC, the catalytic activity of Pt/RGO-EG jumped to 1138.3 mol-AN/(mol-Pt min), and it was also extremely active for the hydrogenation of a series of nitroarenes. The unique catalytic activity of Pt/RGO-EG is not only related to the well dispersed Pt clusters on the RGO sheets but also the well dispersion of Pt/RGO-EG in the reaction mixture.  相似文献   

4.
Highly dispersed platinum nanoparticles (NPs) were fabricated on the surface of few-layered reduced graphene oxide (Pt/RGO) via direct ethylene glycol reduction of PtCl62  in aqueous solution. This well-defined Pt/RGO catalyst was highly selective and active for the hydrogenation of cinnamaldehyde (CAL) to corresponding cinnamyl alcohol (COL) under mild conditions. It was found that the selectivity of COL remained 85.3% at 97.8% CAL conversion in ethanol. These results could be ascribed to the well dispersed Pt NPs on RGO sheets, well dispersion of Pt/RGO in ethanol and ethanol can inhibit the generation of acetals.  相似文献   

5.
Pt–Cu/reduced graphene oxide (Pt–Cu/RGO) hybrids with different Pt/Cu ratios were prepared by the reduction of H2PtCl6 and CuSO4 by NaBH4 in the presence of graphene oxide (GO). The Pt–Cu nanoparticles were characterized by transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The reduction of GO was verified by ultraviolet–visible absorption spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. Compared to Pt/RGO, the Pt–Cu/RGO hybrids have superior electrocatalytic activity and stability for the oxidation of methanol and formic acid. Thus they should have potential applications in direct methanol and formic acid fuel cells.  相似文献   

6.
Low cost resistive switching memory devices using graphene oxide–iron oxide (GF) hybrid thin films, sandwiched between platinum (Pt) and indium-tin-oxide (ITO) electrodes, were demonstrated. The fabricated devices with Pt/GF/ITO structure exhibited reliable and reproducible bipolar resistive switching performance, with an ON/OFF current ratio of 5 × 103, excellent retention time longer than 105 s, SET voltage of 0.9 V, and good endurance properties. In all aspects of the device characteristics, the GF based devices outperformed graphene oxide (GO) based devices. Ohmic conduction was found to be dominant current conduction mechanism in all switching regions except for the high voltage regime where space charge limited conduction and trap charge limited conduction were found to be the main current conduction mechanism. X-ray photoelectron spectroscopy and transmission electron microscopy/selected area diffraction analysis revealed γ-Fe2O3 and Fe3O4 iron oxide phases coexist in the hybrid films. While the desorption/adsorption of oxygen-related functional groups on the GO sheets is the dominant resistive switching mechanism in Pt/GO/ITO devices, the formation/rupture of multiple highly conducting Fe3O4 filaments at the iron oxide/GO interface additionally facilitate the switching in the present Pt/GF/ITO devices. Thereby, excellent electrical switching performance was achieved.  相似文献   

7.
Novel reduced graphene oxide (RGO) nanosheet/PtPd nanowire hybrids were prepared by a mild wet chemical approach. Uniform Pt nanowire arrays are successfully supported on functionalized RGO nanosheets with Pd nanoparticles as growing seeds. The whole deposition process was achieved in aqueous solution at room temperature. TEM and HR-TEM analysis indicated the single-crystal feature of the Pt nanowires with a diameter of ca. 4 nm in average and a length of 20–200 nm. Electrochemical characterization demonstrated that the hybrid nanostructures have a higher catalytic activity and stability than commercial state-of-the-art platinum black catalysts (Hispec1000) toward the methanol oxidation reaction (MOR). An initial mass activity of 0.51 A mg−1 and a degradation ratio of 17.2% after 1000 potential sweeping cycles were achieved for the hybrid nanostructures, compared with 0.44 A mg−1 and 27.5% for Pt black, respectively, demonstrating a great potential of this RGO/PtPd hybrids for DMFC applications.  相似文献   

8.
Suman Thakur  Niranjan Karak 《Carbon》2012,50(14):5331-5339
The reduction of graphene oxide (GO) by phytochemicals was investigated using aqueous leaf extracts of Colocasia esculenta and Mesua ferrea Linn. and an aqueous peel extract of orange (Citrus sinensis). The prepared GO and phytoextract reduced GO (RGO) were characterized by ultraviolet–visible spectroscopy, Raman spectroscopy and Fourier transform infrared analyses to provide a clear indication of the removal of oxygen-containing groups from the graphene and the formation of RGO. The extent of reduction was determined from elemental analysis. Formation of few layers of graphene was indicated by transmission electron microscopy. The obtained RGO exhibited good specific capacitance (17–21 Fg?1), high electrical conductivity (3032.6–4006 Sm?1) and high carbon to oxygen ratio (5.97–7.11).  相似文献   

9.
A novel one-pot process that can produce freestanding reduced graphene oxide (RGO) sheets in large scale through a mechanochemical method is presented, which is based on a 1:1 adduct of hydrazine and carbon dioxide (H3N+NHCO2, solid hydrazine). We were able to synthesize RGO sheets by grinding solid hydrazine with graphene oxide (GO), followed by storing the mixed powder at 50 °C for 10 min. No solvents, nor large vessels, nor post-annealing at high temperatures are required. The resulting RGO sample was characterized by elemental analysis, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, Brunauer–Emmett–Teller measurement, thermo gravimetric analysis, Fourier transform infrared spectroscopy, solid state nuclear magnetic resonance spectroscopy, and conductivity measurement. It exhibits excellent conductivity and possesses a high specific surface area. This reduction method was successfully applied for the fabrication of inkjet-printed RGO devices on a flexible substrate.  相似文献   

10.
TiO2/reduced graphene oxide (RGO) nanocomposites Gx (RGO titania nanocomposite, x grams tetrabutyl titanate per 0.03 g RGO, x = 0.25, 0.50, 1.00) were prepared by a hydrothermal method: graphene oxide was reduced to RGO in a 2:1 water:ethanol mixture in the presence of varying quantities of tetrabutyl titanate, which deposited as TiO2 on the RGO sheets. The nanocomposites were characterized by a combination of Fourier transform infrared spectroscopy, diffuse reflectance ultraviolet–visible spectroscopy, photoluminescence spectroscopy, Raman spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy studies. The nanocomposite G0.25 exhibits enhanced nonlinear optical properties compared to its individual components, which is ascribed to a combination of mechanisms. The role of defects and electron/energy transfer in the optical limiting performance of G0.25 was clarified with the help of Raman and photoluminescence spectroscopies. Intensity-dependent switching between reverse saturable absorption and saturable absorption behavior was observed with the G0.50 nanocomposite.  相似文献   

11.
A one-pot solvothermal synthesis method was developed to prepare reduced graphene oxide (RGO) supported ferrite (MFe2O4, M = Mn, Zn, Co and Ni) hybrids using graphite oxide and metal ions (Fe3+ and M2+) as starting materials. The hybrids were characterized by X-ray powder diffraction, Raman spectra, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and vibrating sample magnetometer. It was shown that monodispersed MFe2O4 microspheres with uniform size were homogeneously deposited on RGO nanosheets. The influence of the metal ion concentration on the morphology of the hybrids was investigated. The hybrids possess considerable saturation magnetization, lower remanence and coercivity. Importantly, the obtained hybrids are effective adsorbents for removal of dye pollutants. It was found that over 92% rhodamine B (RhB) and 100% methylene blue (MB) with a concentration of 5 mg/L can be removed by the hybrids within 2 min when the concentration of the hybrids is 0.6 g/L. In addition, the hybrids also show enhanced photocatalytic activity in the degradation of RhB and MB. Benefiting from their bigger saturation magnetization, the hybrids can be easily separated from the solution by a magnet. This research would provide a new easy separating platform for wastewater decontamination.  相似文献   

12.
《Ceramics International》2017,43(4):3769-3773
MoO3/reduced graphene oxide (MoO3/RGO) composites were successfully prepared via a facile one-step hydrothermal method, and evaluated as anode materials for sodium ion batteries (SIBs). The crystal structures, morphologies and electrochemical properties of the as-prepared samples were characterized by X-ray diffraction, field-emission scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge tests, respectively. The results show that the introduction of RGO can enhance the electrochemical performances of MoO3/RGO composites. MoO3/RGO composite with 6 wt% RGO delivers the highest reversible capacity of ~208 mA h g−1 at 50 mA g−1 after 50 cycles with good cycling stability and excellent rate performance for SIBs. The excellent sodium storage performance of MoO3/RGO should be attributed to the synergistic effect between MoO3 and RGO, which offers the increased electrical conductivity, the facilitated electron transfer ability and the buffering of volume expansion.  相似文献   

13.
We report on a facile, simple, and green graphene oxide (GO) reduction method based on a supercritical alcohol approach. The influence over the chemical, thermal, morphological, and textural properties of reduced graphene oxides (RGOs) of five different alcohols in their supercritical conditions – methanol, ethanol, 1-propanol, 2-propanol, and 1-butanol – was investigated in detail. Although the thermal stabilities and Fourier-transform infrared spectra of RGOs produced using the different alcohols are very similar, a substantial difference in the carbon-to-oxygen ratios measured by X-ray photoelectron spectroscopy and Brunauer–Emmett–Teller surface areas are observed. The RGO produced using supercritical ethanol exhibited a much higher carbon-to-oxygen ratio of 14.4 and a much larger surface area of 203 m2/g compared with that produced using the other supercritical alcohols. Raman spectra showed that the RGOs produced using supercritical ethanol and supercritical 2-propanol retained more of the graphitic structure. X-ray diffraction analysis revealed that RGOs produced using supercritical 1-propanol and supercritical 1-butanol retained at least two different interlayer spacings. The deoxygenation mechanism of GO in supercritical ethanol is proposed based on gas and liquid product analysis.  相似文献   

14.
Fully dense yttria-stabilized zirconia (YSZ) ceramics reinforced with reduced graphene oxide (RGO) were fabricated by spark plasma sintering (SPS), and their electrical, thermal, and mechanical properties were investigated. Graphene oxide (GO) was exfoliated by a short sonification in dimethylformamide (DMF)/water solution and uniformly mixed with ZrO2 powders. The microstructure of the composites showed that undamaged RGO sheets were homogeneously distributed throughout matrix grains. The electrical conductivity of YSZ composites drastically increased with the addition of RGO, and it reached 1.2 × 104 S/m at 4.1 vol.%. However, the thermal diffusivity increased only 12% with RGO addition. The hardness decreased slightly with RGO addition, whereas the fracture toughness significantly increased from 4.4 to 5.9 MPa1/2. The RGO pull-out and crack bridging contributed to the improved fracture toughness.  相似文献   

15.
An environment-friendly approach to synthesizing reduced graphene oxide (RGO) was developed by using chitosan (CS) as both a reducing and a stabilizing agent. Factors that affect the reduction of graphene oxide (GO), such as the ratio of CS/GO, pH and temperature, were explored to obtain optimum reaction conditions. The RGO was characterized with UV visible absorption spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction spectroscopy, thermo-gravimetric analysis, and X-ray photoelectron spectroscopy and transmission electron microscopy. Analysis shows that CS macromolecules can efficiently reduce GO at a comparatively low temperature and their adsorption onto the RGO nanosheets allows a stable RGO aqueous dispersion to be formed. Since CS is a natural, nontoxic and biodegradable macromolecule, this approach provides a new green method for GO reduction that would facilitate the large scale production of RGO, which has great value for graphene applications. Moreover, CS can reduce GO and AgNO3 (or HAuCl4) in one pot to obtain Ag nanoparticle-RGO hybrids or Au nanoparticle-RGO hybrids that exhibit good electrochemical activity.  相似文献   

16.
《Ceramics International》2017,43(8):6019-6023
Sb2S3/reduced graphene oxide (SSR) nanocomposites were successfully synthesized through a facile one-step hydrothermal process, as used as anode materials for sodium ion batteries (SIBs). The characterization and electrochemical performance of the as-prepared samples were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption isotherms, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge tests, respectively. The results show that the introduction of reduced graphene oxide (RGO) can improve the electrochemical performances of SSR nanocomposites. SSR nanocomposites with 10 wt% RGO exhibits the highest reversible capacity of 581.2 mAh g−1 at the current density of 50 mA g−1 after 50 cycles, and excellent rate performance for SIBs. The improved electrochemical performance is attributed to the smaller Sb2S3 nanoparticles dispersed on RGO crumpled structure and synergetic effects between Sb2S3 and RGO matrix, which can increase specific surface area and improve electrical conductivity, reduce sodium ion diffusion distance, and effectively buffer volume changes during cycling process.  相似文献   

17.
Composite films consisting of polypyrrole (PPy) and graphene oxide (GO) were electrochemically synthesized by electrooxidation of 0.1 M pyrrole in aqueous solution containing appropriate amounts of GO. Simultaneous chronoamperometric growth profiles and frequency changes on a quartz crystal microbalance showed that the anionic GO was incorporated in the growing GO/PPy composite to maintain its electrical neutrality. Subsequently, the GO was reduced electrochemically to form a reduced GO/PPy (RGO/PPy) composite by cyclic voltammetry. Specific capacitances estimated from galvanostatic discharge curves in 1 M H2SO4 at a current density of 1 A g?1 indicated that values for the RGO/PPy composite were larger than those of a pristine PPy film and the GO/PPy composite. In the case of 6 mg mL?1 GO for the preparation of GO/PPy, a high specific capacitance of 424 F g?1 obtained at the electrochemically prepared RGO/PPy composite indicated its potential for use as an electrode material for supercapacitors.  相似文献   

18.
The thermal conductive polyamide-6/graphene (PG) composite is synthesized by in situ ring-opening polymerization reaction using ε-caprolactam as the monomer, 6-aminocaproic acid as the initiator and reduced graphene oxide (RGO) as the thermal conductive filler. The generated polyamide-6 (PA6) chains are covalently grafted onto graphene oxide (GO) sheets through the “grafting to” strategy with the simultaneous thermal reduction reaction from GO to RGO. The homogeneous dispersion of RGO sheets in PG composite favors the formation of the consecutive thermal conductive paths or networks at a relatively low GO sheets loading, which improves the thermal conductivity (λ) from 0.196 W m−1 K−1 of neat PA6 to 0.416 W m−1 K−1 of PG composite with only 10 wt% GO sheets loading.  相似文献   

19.
Manganese oxide (MnO2)/three-dimensional (3D) reduced graphene oxide (RGO) composites were prepared by a reverse microemulsion (water/oil) method. MnO2 nanoparticles (3–20 nm in diameter) with different morphologies were produced and dispersed homogeneously on the macropore surfaces of the 3D RGO. Scanning electron microscopy and transmission electron microscopy were applied to characterize the microstructure of the composites. The MnO2/3D RGO composites, which were annealed at 150 °C, displayed a significantly high specific capacitance of 709.8 F g−1 at 0.2 A g−1. After 1000 cycles, the capacitance retention was measured to be 97.6%, which indicates an excellent long-term stability of the MnO2/3D RGO composites.  相似文献   

20.
A synthesis method including Pt-induced oxidation and light irradiation-assisted routes has been developed to prepare a ZnO rod–CdS/reduced graphene oxide (RGO) heterostructure. Here, graphene oxide nanosheets are reduced and loaded onto the surface of Zn spheres using a redox process. ZnO rods are generated from Zn spheres by a Pt-induced oxidation method, and CdS nanoparticles are then loaded onto the surface of RGO via a light irradiation-assisted method. The ZnO rod–CdS/RGO heterostructure exhibits 3.8 times higher photocatalytic hydrogen generation rate from an aqueous solution containing Na2S/Na2SO3 than the reference ZnO rod–CdS heterostructure under simulated solar light irradiation. The optimal contents of RGO nanosheets and CdS nanoparticles are 2 wt% and 20 at.%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号