首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nano graphene oxide (NGO) was produced by further refluxing graphene oxide (GO) sheets in HNO3, and carboxylic acid functionalized graphene oxide (GO–COOH) was obtained by a simple etherification reaction between GO and chloroacetic acid. The GO, GO–COOH and NGO sheets are combined with TiO2 nanorods by a two-phase assembling method, and confirmed by transmission electronic microscopy. The GO–TiO2, GO–COOH–TiO2 and NGO–TiO2 composites are used in a comparative study of photocatalytic H2 generation activity under UV light irradiation. The H2 generation rate of TiO2 nanorods was slightly increased from 15 to 30 mL h−1 g−1 by replacing oleic acid ligands with hydrophilic dopamine, and significantly increased to 105 mL h−1 g−1 after combining with GO sheets. The further comparative study shows that GO–COOH–TiO2 composite has higher H2 generation rate of 180 mL h−1 g−1 than that of GO–TiO2 and NGO–TiO2 composites.  相似文献   

2.
《Ceramics International》2016,42(11):12644-12650
Hierarchical nickel oxide/graphene oxide (NiO/GO) and nickel oxide/graphene oxide/silver (NiO/GO/Ag) heterostructures were sucessfully fabricated as high-performance supercapacitors electrode materials by using a hydrothermal process and a photoreduction process. The experimental results showed that the NiO/GO/Ag heterostructure electrodes showed better electrochemical performance than those of NiO/GO and bare NiO nanosheets. The NiO/GO/Ag electrode exhibited a higher specific capacitance of 229 F g−1 at a current density of 1 A g−1, higher than that of 161 F g−1 for NiO/GO composites. Furthermore, NiO/GO/Ag electrode also showed good rate capability (still 200 F g−1 at 6 A g−1) and cycling stability (24% loss after 2000 repetitive cycles at a scan rate of 20 mV s−1). The enhanced capacitive performance of the NiO/GO/Ag composites was mainly attributed to the introduction of Ag nanoparticles, which increased the electrical conductivities of the composites, and promoted the electron transfer between the active components. This study suggested that NiO/GO/Ag composites were a promising class of electrode materials for high performance energy storage applications.  相似文献   

3.
Developments of membrane water desalination are impeded by low water vapor flux across the membrane. We present an innovative membrane design to significantly enhance the water vapor flux. A bilayer zirconia-based membrane with a thick hierarchically-structured support and a thin functional layer is prepared using a combined freeze drying tape casting and screen printing method. The hierarchically-structured YSZ support has a porosity of 42.6%, pores of 4.5 μm or larger, and a relatively low tortuosity of 1.58 along the thickness direction. The bilayer membrane is then converted from naturally hydrophilic to hydrophobic via grafting with a fluoroalkylsilane. A water flux of 28.7 Lm−2 h−1 and a salt rejection of 99.5% are achieved by exposing the functional layer to 80 °C salt water of 2 wt.% NaCl and the support layer to 20 °C distilled water. These results are the best performing ones for ceramic membranes in direct contact membrane distillation operation.  相似文献   

4.
《Ceramics International》2017,43(5):4309-4313
A combination of high-energy ball milling and constant pressure chemical vapor deposition was used to prepare carbon-coated SiO/ZrO2 composites. It was found that the as-prepared composites were composed of amorphous carbon, amorphous SiO, and paracryslalline ZrO2. The electrochemical analysis results revealed excellent electrochemical performances for the composites, including a high initial discharge capacity (1737 mA h g−1), a remarkable cyclic stability (reversible capacity of 721 mA h g−1 at 800 mA g−1, after 100 cycles), and a good rate capability (870 mA h g−1 at 800 mA g−1). These features demonstrate that these composites are promising alternative candidates for high-efficiency electrode materials of Li-ion batteries.  相似文献   

5.
《Ceramics International》2016,42(16):18568-18572
A novel MnO@Amorphous C-Carbon nanotubes (MnO@C-CNTs) composite is prepared by chemical vapor deposition (CVD). When used as an anode material for Li-ion batteries, the MnO@C-CNTs composite exhibits an initial discharge capacity of 1164 mA h g−1 at 100 mA g−1 and the discharge capacity gradually increased from 571.7 mA h g−1 to 654 mA h g−1 after 100 cycles at 1 A g−1, which shows an increase of the capacity rather than attenuation. Furthermore, the MnO@C-CNTs electrode can deliver a capacity of up to 228 mA h g−1 at 5 A g−1. These results indicate that the three-dimensional conductive network of the MnO@C-CNTs composite could prevent the aggregation of MnO particles, and its open structure allows electrolyte penetration, and reduces the diffusion path of the lithium ions, hence maximizes utilization of the electrochemically active MnO particles, while enhances the conductivity of electrode material and Li+ transport. This work offers a universal approach to design various metal oxides@C-CNTs composite.  相似文献   

6.
《Catalysis communications》2007,8(9):1301-1304
The performance of Co doped YBa2Cu3O7−δ (YBCO) membrane reactor have been investigated in a process of the partial oxidation of methane (POM) to syngas. The results shows that doping YBCO membrane with a little Co can enhance its oxygen permeation flux and improve its stability in reducing atmosphere noticeably. At 900 °C, with feed flow at 50 ml/min, CH4 6.0 v%, SV = 12,000 h−1, and Ni/ZrO2 catalyst, CH4 conversion rate, CO selectivity, and oxygen permeation flux can reach to 98%, 92% and 1.41 ml min−1 cm−2 respectively.  相似文献   

7.
In these studies concentrated sugar solutions of barley straw and corn stover hydrolysates were fermented using Clostridium beijerinckii P260 with simultaneous product recovery and compared with the performance of a control glucose batch fermentation process. The control glucose batch fermentation resulted in the production of 23.25 g L−1 ABE from 55.7 g L−1 glucose solution resulting in an ABE productivity and yield of 0.33 g L−1 h−1 and 0.42, respectively. The control reactor (I) was started with 62.5 g L−1 initial glucose and the culture left 6.8 g L−1 unused sugar due to butanol toxicity resulting in incomplete sugar utilization. Barley straw (BS) hydrolysate sugars (90.3 g L−1) resulted in the production of 47.20 g L−1 ABE with a productivity of 0.60 g L−1 h−1 and a yield of 0.42. Fermentation of corn stover (CS) hydrolysate sugars (93.1 g L−1) produced 50.14 g L−1 ABE with a yield of 0.43 and a productivity of 0.70 g L−1 h−1. These productivities are 182–212% higher than the control run. The culture was able to use 99.4–100% sugars (CS & BS respectively) present in these hydrolysates and improve productivities which were possible due to simultaneous product removal. Use of >100 g L−1 hydrolysate sugars was not considered as it would have been toxic to the culture in the integrated (simultaneous fermentation and recovery) process.  相似文献   

8.
《Ceramics International》2017,43(15):11967-11972
Stabilizing the layer structures of Mo-based anode materials is still a challenge for Li ion batteries. Herein, we proposed an electrochemical presodiation strategy for MoS2 and MoO3 to improve their cycling stability. It is interesting to note that the cycling stability of as-treated MoS2 and MoO3 was significantly improved. Although the reversible discharge capacity was slightly decreased, the capacity of the pretreated MoS2 at 300 mA g−1 was retained at 345 mA h g−1 after 100 cycles while that of the pristine one decreased to 151 mA h g−1. The capacity of the pretreated MoO3 after 60 cycles was also improved from 275 mA h g−1 (the pristine one) to 460 mA h g−1. The stabilizing effect was further verified by scanning electron microscope (SEM) analysis. Electrochemical presodiation here could be a promising modification strategy for Mo-based anode materials.  相似文献   

9.
《Ceramics International》2016,42(16):18173-18180
It is essential to develop new electrode materials for electrochemical energy storage to meet the increasing energy demands, reduce environmental pollution and develop low-carbon economy. In this work, binder-free NiCo2S4 nanorod arrays (NCS NRAs) on nickel foam electrodes are prepared by an easy and low energy-consuming route. The electrodes exhibit superior electrochemical properties both for alkaline and Li-ion batteries. In 3 M KOH electrolyte, the NCS NRAs achieve a specific capacity of 240.5 mA h g−1 at a current density of 0.2 A g−1, and 105.7 mA h g−1 after 1500 cycles at the current density of 5 A g−1 with capacity retention of 87.3%. As the anode for LIBs, it shows a high initial capacity of 1760.7 mA h g−1 at the current density of 100 mA g−1, corresponding coulombic efficiency of 87.6%, and a rate capacity of 945 mA h g−1 when the current density is improved 10 times. Hence, the NiCo2S4 nanorod arrays are promised as electrode materials with competitive performance.  相似文献   

10.
《Ceramics International》2017,43(16):13493-13499
Photocatalytic hydrogen production attracts great attention due to its clean energy conversion and renewable usage. In order to achieve efficient charge separations in photocatalysts, pseudo-microspherical ZnO/CdS core-shell structures were fabricated by precipitation method. ZnO pseudo-microspheres of about 2 µm diameter were uniformly synthesized, and they were used as core materials covered with various amounts of CdS shell nanoparticles. The highest hydrogen production rate from as-prepared photocatalysts was 146 μmol g−1 h−1 at 63 wt% CdS content under one sun irradiation condition. After thermal treatments, it was much improved to 241.2 μmol g−1 h−1 at the same CdS content possibly due to the increased crystallinity and efficient charge flows with an aid of additional CdO component. Reproducibility of hydrogen production revealed stable mode of operation for three consecutive runs. Therefore, ZnO/CdS/CdO ternary photocatalyst systems provide efficient charge separations and electron flows for improving solar hydrogen production by suppressing electron-hole recombinations.  相似文献   

11.
《Ceramics International》2016,42(6):6874-6882
Due to the characteristics of an electronic insulator, Na2Li2Ti6O14 always suffers from low electronic conductivity as anode material for lithium storage. Via Ag coating, Na2Li2Ti6O14@Ag is fabricated, which has higher electronic conductivity than bare Na2Li2Ti6O14. Enhancing the Ag coating content from 0.0 to 10.0 wt%, the surface of Na2Li2Ti6O14 is gradually deposited by Ag nanoparticles. At 6.0 wt%, a continuous Ag conductive layer is formed on Na2Li2Ti6O14. While, particle growth and aggregation take place when the Ag coating content reaches 10.0 wt%. As a result, Na2Li2Ti6O14@6.0 wt% Ag displays better cycle and rate properties than other samples. It can deliver a lithium storage capacity of 131.4 mAh g−1 at 100 mA g−1, 124.9 mAh g−1 at 150 mA g−1, 119.1 mAh g−1 at 200 mA g−1, 115.8 mAh g−1 at 250 mA g−1, 111.9 mAh g−1 at 300 mA g−1 and 109.4 mAh g−1 at 350 mA g−1, respectively.  相似文献   

12.
《Ceramics International》2016,42(13):14782-14787
NiSb2O6 and reduced graphene oxide (NiSb2O6/rGO) nanocomposites are successfully fabricated by a solid-state method combined with a subsequent solvothermal treatment and further used as anode material of lithium-ion battery. The NiSb2O6/rGO nanocomposites exhibit a higher reversible capacity (of ca. 1240.5 mA h g−1 at a current density of 50 mA g−1), along with a good rate capability (395.2 mA h g−1 at a current density of 1200 mA g−1) and excellent capacity retention (684.5 mA h g−1 after 150 cycles). These good performances could be attributed to the incorporated reduced grapheme oxide, which significantly improves the electronic conductivity of the NiSb2O6.  相似文献   

13.
The demand for flexible and transparent barrier films in industries has been increasing. Learning from nature, borate ions were used to cross-link poly(vinyl alcohol) (PVA) and graphene oxide (GO) to produce flexible, transparent high-barrier composite films with a bio-inspired structure. PVA/GO films with only 0.1 wt% GO and 1 wt% cross-linker exhibited an O2 transmission rate <0.005 cc m−2 day−1, an O2 permeability <5.0 × 10−20 cm3 cm cm−2 Pa−1 s−1, and a transmittance at 550 nm >85%; thus, they can be used for flexible electronics. Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy indicated that the outstanding barrier properties are attributed to the formation of chemical cross-linking involving borate ions, GO sheets, and PVA, similar to the borate cross-links in high-order plants. Comparing our experimental data with the Cussler model, we found that the effective aspect ratio was significantly increased after cross-linking, suggesting that cross-linking networks connected GO with each other to form ultra-large impermeable regions. A feasible green technique, with potential for commercial production of barrier films for flexible electronics was presented.  相似文献   

14.
Artificial graphite containing abundant in situ grown onion-like carbon hollow nanostructures (OCHNs) was prepared from nickel nanoparticles doped pitch and natural graphite flakes by hot-pressing sintering method. Galvanostatic discharge–charge tests indicate that the synthetic graphite with abundant OCHNs exhibits a high specific capacity of 460 mA h g−1 at 20 mA g−1 as well as an excellent rate capability, with a reversible capacity of 220 mA h g−1 at 1 A g−1. Besides the advantages of common graphite anode materials, these superiorities make synthetic graphite a very promising anode for high-performance lithium-ion batteries.  相似文献   

15.
《Ceramics International》2017,43(16):13224-13232
The present study reports on the one-pot synthesis of Ni3V2O8 (NVO) electrodes by a simple metal organic framework-combustion (MOF-C) technique for anode applications in Li-ion batteries (LIBs). The particle morphology of the prepared NVO is observed to vary as irregular rods, porous bitter gourd and hybrid micro/nano particles depending on the concentration of the framework linker used during synthesis. In specific, the orthorhombic phase and the unique bitter gourd-type secondary structure comprised of agglomerated nanoparticles and porous morphologies is confirmed using powder X-ray diffraction, electron microscopies, X-ray photoelectron spectroscopy and N2 adsorption–desorption measurements. When tested for lithium batteries as anode, the bitter gourd-type NVO electrode shows an initial discharge capacity of 1362 mA h g−1 and a reversible capacity of 822 mA h g−1 are sustained at a rate of 200 mA g−1 after 100 cycles. Moreover, at 2000 mA g−1, a reversible capacity of 724 mA h g−1 is retained after 500 cycles. Interestingly, the porous bitter gourd-shaped NVO electrode registered significantly high rate performance and reversible specific capacities of 764, 531 and 313 mA h g−1 at high rates of 1, 5 and 10 A g−1, respectively.  相似文献   

16.
Graphene nanoribbons (GNRs) with tubular shaped thin graphene layers were prepared by partially longitudinal unzipping of vapor-grown carbon nanofibers (VGCFs) using a simple solution-based oxidative process. The GNR sample has a similar layered structure to graphene oxide (GO), which could be readily dispersed in isopropyl alcohol to facilitate electrophoretic deposition (EPD). GO could be converted to graphene after heat treatment at 300 °C. The multilayer GNR electrode pillared with open-ended graphene tubes showed a higher capacitance than graphene flake and pristine VGCF electrodes, primarily due to the significantly increased surface area accessible to electrolyte ions. A GNR electrode with attached MnO2 nanoparticles was prepared by EPD method in the presence of hydrated manganese nitrate. The specific capacitance of GNR electrode with attached MnO2 could reach 266 F g−1, much higher than that of GNR electrode (88 F g−1) at a discharge current of 1 A g−1. The hydrophilic MnO2 nanoparticles attached to GNRs could act as a redox center and nanospacer to allow the storage of extra capacitance.  相似文献   

17.
《Ceramics International》2017,43(8):6232-6238
Uniform Nb2O5 nanospheres/surface-modified graphene (SMG) composites for anode materials in lithium ion batteries were synthesized by hydrothermal method. The microstructure and morphology of composites were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscope techniques. The experimental results showed that Nb2O5 nanospheres were tightly and uniformly grown on the surface of SMG nanosheets. Nb2O5 nanospheres/SMG composites exhibited an impressive reversible capacity of 404.6 mA h g−1 at the current density of 40 mA g−1 after 100 cycles, and an excellent rate capacity of 345.5 mA h g−1 at the current density of 400 mA g−1.  相似文献   

18.
Hydrothermal carbonization followed by chemical activation is utilized to convert paper pulp mill sludge biowaste into high surface area (up to 2980 m2 g−1) carbons. This synthesis process employs an otherwise unusable byproduct of paper manufacturing that is generated in thousands of tons per year. The textural properties of the carbons are tunable by the activation process, yielding controlled levels of micro and mesoporosity. The electrochemical results for the optimized carbon are very promising. An organic electrolyte yields a maximum capacitance of 166 F g−1, and a Ragone curve with 30 W h kg−1 at 57 W kg−1 and 20 W h kg−1 at 5450 W kg−1. Two ionic liquid electrolytes result in maximum capacitances of 180–190 F g−1 with up to 62% retention between 2 and 200 mV s−1. The ionic liquids yielded energy density–power density combinations of 51 W h kg−1 at 375 W kg−1 and 26–31 W h kg−1 at 6760–7000 W kg−1. After 5000 plus charge–discharge cycles the capacitance retention is as high at 91%. The scan rate dependence of the surface area normalized capacitance highlights the rich interplay of the electrolyte ions with pores of various sizes.  相似文献   

19.
The thermal conductive polyamide-6/graphene (PG) composite is synthesized by in situ ring-opening polymerization reaction using ε-caprolactam as the monomer, 6-aminocaproic acid as the initiator and reduced graphene oxide (RGO) as the thermal conductive filler. The generated polyamide-6 (PA6) chains are covalently grafted onto graphene oxide (GO) sheets through the “grafting to” strategy with the simultaneous thermal reduction reaction from GO to RGO. The homogeneous dispersion of RGO sheets in PG composite favors the formation of the consecutive thermal conductive paths or networks at a relatively low GO sheets loading, which improves the thermal conductivity (λ) from 0.196 W m−1 K−1 of neat PA6 to 0.416 W m−1 K−1 of PG composite with only 10 wt% GO sheets loading.  相似文献   

20.
N-enriched mesoporous carbon nanofibers (NMCNFs) were prepared by an electrospinning technique using graphitic carbon nitride (g-C3N4) nanosheets both as sacrificial template and N-doping source. The resultant NMCNF film has a high N-doping level of 8.6 wt% and a high specific surface area of 554 m2 g−1. When directly used as the electrode material for supercapacitor, the free-standing NMPCNF film shows a significantly improved capacitive performance including a higher specific capacitance (220 F g−1 at 0.2 A g−1) and a better rate capability (∼70% retention at 20 A g−1) than those of microporous carbon nanofiber film prepared using the same process without using g-C3N4 nanosheets (145 F g−1 at 0.2 A g−1 and ∼45% retention at 20 A g−1). Moreover, the NMCNFs show superior stability with only a ∼3% decrease of its initial capacitance after 1000 cycles at a high current density of 10 A g−1. More significantly, the energy density of a symmetrical supercapacitor (SC) based on the NMPCNF film can reach 12.5 Wh kg−1 at a power density of 72 W kg−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号