首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Su Zhang  Peng Guo  Jisheng Zhou  Xiaohong Chen 《Carbon》2010,48(14):4211-4214
Graphite oxide was prepared by the Hummers method. Then after further oxidation, a new kind of carbon nanoparticle, with diameter 10-30 nm, was formed in the aqueous solution. On the basis of structural characterization by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy it is deduced that the nanoparticles are generated by the self-assembly of few-layer graphene oxides. A possible formation mechanism is proposed.  相似文献   

2.
3.
We report on a facile, simple, and green graphene oxide (GO) reduction method based on a supercritical alcohol approach. The influence over the chemical, thermal, morphological, and textural properties of reduced graphene oxides (RGOs) of five different alcohols in their supercritical conditions – methanol, ethanol, 1-propanol, 2-propanol, and 1-butanol – was investigated in detail. Although the thermal stabilities and Fourier-transform infrared spectra of RGOs produced using the different alcohols are very similar, a substantial difference in the carbon-to-oxygen ratios measured by X-ray photoelectron spectroscopy and Brunauer–Emmett–Teller surface areas are observed. The RGO produced using supercritical ethanol exhibited a much higher carbon-to-oxygen ratio of 14.4 and a much larger surface area of 203 m2/g compared with that produced using the other supercritical alcohols. Raman spectra showed that the RGOs produced using supercritical ethanol and supercritical 2-propanol retained more of the graphitic structure. X-ray diffraction analysis revealed that RGOs produced using supercritical 1-propanol and supercritical 1-butanol retained at least two different interlayer spacings. The deoxygenation mechanism of GO in supercritical ethanol is proposed based on gas and liquid product analysis.  相似文献   

4.
采用水热法制备了一系列还原氧化石墨烯(rGO)负载的MoS2催化剂(MoS2/rGO)。通过SEM、XRD、EDX、拉曼光谱、HRTEM等手段表征了不同钼源制备的MoS2/rGO催化剂中MoS2的堆积层数、片层尺寸、分散性等纳米结构。表征结果显示水热法可以成功地将MoS2高分散、均匀地负载在rGO表面,且可以通过调控钼源种类调变MoS2/rGO催化剂中MoS2催化加氢活性位。采用蒽作为重质油模型化合物评价了MoS2/rGO催化剂的催化加氢性能,结果表明以四硫代钼酸铵为钼源水热法制备的MoS2/rGO-ATTM催化剂蒽加氢率和八氢蒽选择性分别是浸渍法制备IM-MoS2/rGO催化剂的2.0倍和4.2倍。MoS2/rGO催化剂的催化加氢活性与比表面积无关,主要取决于其上MoS2纳米片的堆积层数和片层长度。MoS2/rGO-ATTM催化剂的高催化加氢活性可以归结于其上MoS2纳米片的高催化加氢活性位暴露量、催化剂的高分散性和高悬浮性。  相似文献   

5.
Partially reduced graphene oxide (RGO) has been fabricated using hydrobromic acid. Since hydrobromic acid is a weak reductant, some oxygen functional groups which are relatively stable for electrochemical systems remain in RGO. Therefore, RGO can be re-dispersed in water and 2–3 layers of graphene can be observed by transmission electron microscopy, showing excellent affinity with water. RGO facilitates the penetration of aqueous electrolyte and introduces pseudocapacitive effects. Moreover, its capacitive nature is enhanced after cycling measurements. It is concluded that the increase of capacitance is due to the reduction of the oxygen functional groups by the cyclic voltammetry and electrochemical impedance spectroscopy analysis. The electrochemical properties in the ionic liquid electrolyte, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6), are also investigated. At a current density of 0.2 A g−1, the maximum capacitance values of 348 and 158 F g−1 are obtained in 1 M H2SO4 and BMIPF6, respectively.  相似文献   

6.
The mediation effect of reduced graphene oxide (rGO) on the oxidative transformation of 1,4-hydroquinone (H2Q) to 1,4-benzoquinone (BQ) in aqueous solution was investigated using a batch method and electron paramagnetic resonance. The results showed that the autoxidation of H2Q was spin-restricted and extremely slow in acidic and neutral pH range, but this process can be dramatically accelerated when rGO was added. In the presence of 33.3 mg L−1 rGO, more than 76.0% of H2Q was oxidized to BQ within 36 h. The enhancement effects of rGO were attributed to the combined contribution of the high chemical reactivity of graphenic edges and defects on rGO and the high electron conductivity of graphene basal surface of rGO. It is proposed that dissolved oxygen reacted with graphenic edges and defects of rGO to produce surface-bound oxygen intermediates, which capture H atoms from the phenolic hydroxyl groups of H2Q and facilitate the generation of semiquinone radical (SQ). The generated SQ continued to transfer an electron to molecular oxygen to yield superoxide radical (O2) and BQ. As a chain-carrying radical, O2 further reacted with H2Q to produce SQ and H2O2.  相似文献   

7.
A simple and facile method for multiscale, in-plane patterning of graphene oxide and reduced graphene oxide (GO–rGO) was developed by region-specific reduction of graphene oxide (GO) under a mild irradiation. The UV-induced reduction of graphene oxide was monitored by various spectroscopic techniques, including optical absorption, X-ray photoelectron spectroscopy (XPS), Raman, and X-ray diffraction (XRD), while the resultant GO–rGO patterned film morphology was studied on optical microscope, scanning electron microscope (SEM), and atomic force microscope (AFM). Flexible symmetric and in-plane supercapacitors were fabricated from the GO–rGO patterned polyethylene terephthalate (PET) electrodes to show capacitances up to 141.2 F/g.  相似文献   

8.
9.
Graphene oxide (GO) cast on conductive substrates was electrochemically reduced in some organic solvents. The amount of electricity required for the almost complete reduction of GO was 2.0 C for 1 mg GO, corresponding to attaching of a one-electron reducible species to each benzene ring in graphene. The electrochemically reduced GO film gave an electrical conductivity of about 3 S cm−1 and exhibited a relatively high specific capacitance of 147.2 F g−1 in propylene carbonate. The electrochemical reduction of GO was feasible on Al foils as well.  相似文献   

10.
This study deals with the utility of mini spray dryer process to improve the dispersibility, of graphene oxide(GO) and its application for high-performance supercapacitor. Initially, the neutral solution of GO was obtained using the modified Hummer's method. After this, the prepared GO solution was processed by mini spray dryer to obtain a more purified, lighter, and dispersed form of GO which is named as spray dryer processed GO (SPGO). The SPGO thus obtained showed excellent dispersibility behavior with various solvents, which is not found in case of conventional oven drying. Furthermore, utility of SPGO and its reduced form (r-SPGO) for supercapacitor applications have been investigated. Results obtained from the cyclic voltammetry(CV) analysis, impedance, and charge-discharge behavior of supercapacitor fabricated using r-SPGO shows enhanced features. Therefore, the simple spray dried GO and its reduced form, that is, r-SPGO can be utilized as a potential candidate for the supercapacitor application. Herein, as synthesized SPGO exhibited the specific capacitance of 12.07 and 37.6 F/g with PVA-H3PO4 and 1 mol/L H3PO4, respectively, at a scan rate of 5 mV/s. On the other hand, reduced form of SPGO, that is, r-SPGO showed the specific capacitance of 27.16 and 230 F/g with PVA-H3PO4 and 1 mol/L H3PO4, respectively.  相似文献   

11.
12.
ABSTRACT

A novel nanocaptor (GO-HDX) was designed based on the graphene oxide nanosheets functionalized with hydroxamate moieties that enabled the selective removal and recovery of extremely radioactive uranyl ions from wastewater samples. The synthesized nanocaptor (GO-HDX) was well-characterized using elemental analysis, FT-IR and Raman spectroscopy, and X-ray diffraction (XRD). The U(VI) removal from aqueous solution with GO-HDX was investigated in terms of essential factors (initial pH, contact time and temperature), adsorption isotherm and thermodynamics were examined. The UO2 2+ ions adsorption under the studied conditions was well-?tted to the Freundlich model as well as to the pseudo-first-order model.  相似文献   

13.
Efficiently reducible graphene oxide (GO) was obtained, even if a high degree of functionalization is present. Graphite with few defects was used as starting material and oxidized according to Hummer’s method. An extremely high ID/IG ratio for rGO of 2.8 (532 nm) was observed in the Raman spectrum as a consequence of the lower defect density in GO. It was also possible to demonstrate the impact of local defects on the structure in rGO by local laser exposure experiments on single graphene oxide flakes. Raman spectroscopy can visualize the laser impact by ID/IG ratio measurements.  相似文献   

14.
A green and simple approach is described for the large scale synthesis of reduced graphene oxide (rGO). The transition of graphene oxide (GO) into graphene was confirmed using various analytical techniques. Raman spectroscopy data indicate the partial removal of oxygen-containing functional groups from the surface of GO and formation of graphene. X-ray diffraction (XRD) was used to investigate the crystallinity of graphene nanosheets. The antibacterial activity of GO and rGO was evaluated using cell viability, reactive oxygen species (ROS) production and DNA fragmentation assays. The results suggest that GO and rGO possessed an excellent antimicrobial activity against Escherichia coli.  相似文献   

15.
The effects of humic acid (HA) on copper (Cu(II)) adsorption onto few-layer reduced graphene oxide (FRGO) and few-layer graphene oxide (FGO) were investigated using a batch equilibration method, micro-Fourier transform infrared spectroscopy, and extended X-ray absorption fine structure spectroscopy (EXAFS). The results showed that HA was adsorbed on FRGO through π–π interaction. The adsorbed HA introduced O-containing functional groups and negative charges to FRGO surfaces, increasing Cu(II) adsorption through chemical complexation and electrostatic attraction. In contrast, HA was adsorbed onto FGO mainly through polar interactions, due to its rich O-containing functional groups. The adsorbed HA had little effect on Cu(II) adsorption onto FGO because the shielding effect of HA on Cu(II) adsorption was offset by newly introduced adsorption sites of HA on FGO. EXAFS results suggested that Cu(II) was adsorbed on FRGO and FGO mainly through the coordination with their O-containing functional groups. When HA was added at pH 4.0 and 6.0, more Cu(II) was adsorbed on HA-coated FRGO. At pH 8.0, a portion of Cu(II) in solution precipitated on FRGO surface, while the presence of HA led to the formation of FRGO-HA-Cu ternary surface complexes instead of Cu(II) precipitation.  相似文献   

16.
Reduced graphene oxide (rGO) nanosheets were produced using a modified Hummers method. Antifungal activity of rGO nanosheets was tested against three fungi i.e., Aspergillus niger (A. niger), Aspergillus oryzae (A. oryzae) and Fusarium oxysporum (F. oxysporum). The rGO inhibits the mycelial growth of the fungi and it is believed that this is due to its sharp edges. The half maximal inhibitory concentration (IC50), a measure of the effectiveness of the rGO in inhibiting the fungi, was investigated. IC50 values of the rGO against F. oxysporum, A. niger, and A. oryzae are 50, 100, and 100 μg ml?1, respectively.  相似文献   

17.
Jianfeng Shen  Tie Li  Yu Long  Min Shi  Na Li  Mingxin Ye 《Carbon》2012,50(6):2134-2140
We have developed an easy and scalable chemical reduction method assisted by microwave irradiation for the synthesis of reduced graphene oxide (RGO) nanosheets in solid state. The as-synthesized RGO is characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetry, X-ray diffraction, X-ray photoelectron spectroscopy and atomic force microscopy. It is revealed that the bulk of the oxygen-containing functional groups are removed from graphene oxide with this one-step reduction method and monolayer RGO sheets are got from its N,N-dimethyl formamide solution. It is found that the ammonium bicarbonate plays a key role in the preparation of RGO. Considering the analysis results, a mechanism for the formation of RGO is proposed. Besides being eco-friendly, when compared to previous chemical techniques, this process has several advantages like low cost, simplicity and short processing times, which may find practical applications in the preparation of graphene-based composites.  相似文献   

18.
N-doped graphene (NG) has been prepared by annealing reduced graphene oxide (RGO) in ammonia. The magnetic properties of RGO and NG have been studied. The results showed that doping RGO with N at a relatively low temperature (⩽600 °C) can increase its magnetization, and which can be increased by 64.1% at the annealing temperature of 500 °C.  相似文献   

19.
The curing kinetics of epoxy nanocomposites prepared by incorporating graphene oxide (GO) and chemically reduced graphene oxide (rGO) have been studied using isothermal and nonisothermal differential scanning calorimetry. The kinetic parameters of the curing processes in these systems have been determined by a Kamal and Sourour phenomenological model expanded by a diffusion factor. The predicted curves determined using the kinetic parameters fit well with the isothermal DSC thermograms revealing the proposed kinetic equation clearly explains the curing kinetics of the prepared epoxy amine nanocomposites. Experimental and modeling results demonstrate the presence of an accelerating effect of the GO on the cure of the resin matrix. The use of rGO instead of GO resulted in a slight acceleration reaction rate due to the reduced presence of oxidation groups in rGO. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44803.  相似文献   

20.
《Ceramics International》2020,46(7):9011-9015
In this paper, the antimony doped tin oxide (ATO) and reduced graphene oxide (rGO) were prepared by coprecipitation method and modified Hummers’ method, respectively. Both were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and vector network analyzer (VNA). The as-prepared rGO showed typical sheets-like structure and the as-prepared ATO showed typical nano-particle shape. Then, the ATO and rGO multilayer films were designed and the microwave absorption performances were numerically evaluated using finite element methods. The results showed that synergetic effects of interfacial polarization resonance and 1/4λ elimination were stimulated in 10-layerd 1.8 mm multilayer films to give a minimal reflection loss of −45.2 dB @ 16.1 GHz, and −10 dB bandwidth of 5.4 GHz, which was enhanced more than −30 dB in ATO or rGO monophase absorbers with the same thickness. This work provides a novel technical route to realize high-performance microwave absorbers in terms of simultaneously stronger absorption, broader absorption bandwidth and smaller thickness to facilitate higher flexibility and stability for practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号