首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Fano resonances and their strong doping dependence are observed in Raman scattering of single-layer graphene (SLG). As the Fermi level is varied by a back-gate bias, the Raman G band of SLG exhibits an asymmetric line shape near the charge neutrality point as a manifestation of a Fano resonance, whereas the line shape is symmetric when the graphene sample is electron or hole doped. However, the G band of bilayer graphene (BLG) does not exhibit any Fano resonance regardless of doping. The observed Fano resonance can be interpreted as interferences between the phonon and excitonic many-body spectra in SLG. The absence of a Fano resonance in the Raman G band of BLG can be explained in the same framework since excitonic interactions are not expected in BLG.  相似文献   

2.
In Raman spectroscopy investigations of defective suspended graphene, splitting in the D band is observed. Four double resonance Raman scattering processes: the outer and inner scattering processes, as well as the scattering processes with electrons first scattered by phonons (“phonon-first”) or by defects (“defect-first”), are found to be responsible for these features of the D band. The D sub-bands associated with the outer and inner processes merge with increasing defect concentration. However a Stokes/anti-Stokes Raman study indicates that the splitting of the D band due to the separate “phonon-first” and “defect-first” processes is valid for suspended graphene. For graphene samples on a SiO2/Si substrate, the sub-bands of D band merge due to the increased Raman broadening parameter resulting from the substrate doping. Moreover, the merging of the sub-bands shows excitation energy dependence, which can be understood by considering the energy dependent lifetime and/or scattering rate of photo-excited carriers in the Raman scattering process.  相似文献   

3.
Polarized Raman scattering studies on stiff layered structure of surfactant intercalated with trilayer graphene were performed at different intensities and excitation wavelengths. The D and 2D Raman bands reach the highest and lowest intensity when the polarization of laser excitation light is oriented along and perpendicular on the edges. The 2D band discloses two lorentzian components, separated by ∼40 cm−1, which result from the action of interplanar forces, of Casimir nature. The value of ∼40 cm−1 is close to the energy value associated with E2g interplanar layer shear mode evidenced so far only by neutron spectrometry. A new result regards the opposite variation of the intensities of D and 2D bands with the increase of the wavelength of the excitation light. This originates in the different origin of the D and 2D bands; the former is dependent on disorder including also the graphene edges while the latter, results from in a double resonant mechanism combined with a Casimir effect. One demonstrates that the magnitude of Casimir force, which activates interlayer vibration modes, depends on the carrier density on the graphene sheets which can be varied both by the intensity and the wavelength of the excitation laser light.  相似文献   

4.
Graphene sheets prepared through liquid exfoliation of expanded graphite were hybridized with Pd nanoparticles. The impact of these particles on the electronic and physical structure of the graphene is determined through transmission electron microscopy and Raman spectroscopy using 532 and 325 nm excitation wavelengths. Based on the changes to the Raman D and G peaks, insights are provided concerning the deposition mechanism at pristine and defective lattice sites, as well as electronic scattering. These data are compared to ab initio band structure computations. For purposes of the model, the graphene/Pd hybrid was approximated by a charged graphene sheet. The resulting structure exhibited π–π1 expansion approaching the Γ point of the Brillouin zone which was validated by tracking the Raman D band dispersion.  相似文献   

5.
Graphene CVD-grown on Cu has been studied using Raman spectroscopy, X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES). Raman data indicate the presence of weak compressive strain at the interface of graphene/Cu. Compared with highly ordered pyrolytic graphite (HOPG), new electronic states in the conduction band are observed for graphene/Cu, which are mainly ascribed to the defect states and interfacial interaction between the single graphene layer and Cu surface. Moreover, polarization dependent XAS measurements demonstrate that the graphene/Cu exhibits a high degree of alignment and weak corrugation on the surface. Significant intensity modulation in the resonant XES spectral shape upon different excitation energies near the C K-edge indicates that graphene layer preserves an intrinsic momentum as that of HOPG and the interaction between graphene and Cu shows weak influence on the valence band structure of graphene. However, broad inelastic features and subtle peak shifts are observed in the resonant XES spectra of graphene/Cu in comparison of HOPG, which can be mainly attributed to the electron–phonon scattering and charge transfer from the interfacial interaction of graphene and Cu substrate.  相似文献   

6.
Raman scattering characterization of CVD graphite films   总被引:1,自引:0,他引:1  
Raman spectroscopic study has been performed for thin graphite films grown on nickel substrates by chemical vapor deposition from a mixture of hydrogen and methane activated by a direct current discharge. Depending on the growth conditions, the CVD films are composed of graphene layers parallel to the substrate surface or of plate-like crystallites with the predominant orientation of their graphene layers perpendicular to the substrate surface. A comparison of the Raman spectra for the CVD films and for the highly oriented pyrolytic graphite has been performed. The mechanisms governing the Raman scattering process in the films are discussed. An important role of a double resonance mechanism in the Raman spectra of these graphite-based materials has been revealed. The Raman band positions and intensities and their dependence on excitation wavelength confirm a high degree of the structural order in the CVD graphite films.  相似文献   

7.

Abstract

The interactions between phonons and electrons induced by the dopants or the substrate of graphene in spectroscopic investigation reveal a rich source of interesting physics. Raman spectra and surface-enhanced Raman spectra of supported and suspended monolayer graphenes were measured and analyzed systemically with different approaches. The weak Raman signals are greatly enhanced by the ability of surface-enhanced Raman spectroscopy which has attracted considerable interests. The technique is regarded as wonderful and useful tool, but the dopants that are produced by depositing metallic nanoparticles may affect the electron scattering processes of graphene. Therefore, the doping and substrate influences on graphene are also important issues to be investigated. In this work, the peak positions of G peak and 2D peak, the I2D/IG ratios, and enhancements of G and 2D bands with suspended and supported graphene flakes were measured and analyzed. The peak shifts of G and 2D bands between the Raman and SERS signals demonstrate the doping effect induced by silver nanoparticles by n-doping. The I2D/IG ratio can provide a more sensitive method to carry out the doping effect on the graphene surface than the peak shifts of G and 2D bands. The enhancements of 2D band of suspended and supported graphenes reached 138, and those of G band reached at least 169. Their good enhancements are helpful to measure the optical properties of graphene. The different substrates that covered the graphene surface with doping effect are more sensitive to the enhancements of G band with respect to 2D band. It provides us a new method to distinguish the substrate and doping effect on graphene.

PACS

78.67.Wj (optical properties of graphene); 74.25.nd (Raman and optical spectroscopy); 63.22.Rc (phonons in graphene)  相似文献   

8.
The excitation energy-dependent nature of Raman scattering spectrum, vibration, electronic or both, has been studied using different excitation sources on as-grown and annealed n- and p-type modulation-doped Ga1 − xInxNyAs1 − y/GaAs quantum well structures. The samples were grown by molecular beam technique with different N concentrations (y = 0%, 0.9%, 1.2%, 1.7%) at the same In concentration of 32%. Micro-Raman measurements have been carried out using 532 and 758 nm lines of diode lasers, and the 1064 nm line of the Nd-YAG laser has been used for Fourier transform-Raman scattering measurements. Raman scattering measurements with different excitation sources have revealed that the excitation energy is the decisive mechanism on the nature of the Raman scattering spectrum. When the excitation energy is close to the electronic band gap energy of any constituent semiconductor materials in the sample, electronic transition dominates the spectrum, leading to a very broad peak. In the condition that the excitation energy is much higher than the band gap energy, only vibrational modes contribute to the Raman scattering spectrum of the samples. Line shapes of the Raman scattering spectrum with the 785 and 1064 nm lines of lasers have been observed to be very broad peaks, whose absolute peak energy values are in good agreement with the ones obtained from photoluminescence measurements. On the other hand, Raman scattering spectrum with the 532 nm line has exhibited only vibrational modes. As a complementary tool of Raman scattering measurements with the excitation source of 532 nm, which shows weak vibrational transitions, attenuated total reflectance infrared spectroscopy has been also carried out. The results exhibited that the nature of the Raman scattering spectrum is strongly excitation energy-dependent, and with suitable excitation energy, electronic and/or vibrational transitions can be investigated.  相似文献   

9.
An extended layer of defected SiC has been observed in SiC subjected to heat treatments at 850 and 1050 °C prior to growth of graphene by thermal decomposition. This layer is found to strongly affect the graphene thickness, surface morphology, and Raman spectrum of graphene grown on it. By comparing the strength of the XPS signal associated with this layer it was found that the samples with stronger defected layer signal had the least number of surface pits but also showed the increase in Raman D to G band ratio. The shifts in 2D and G peaks are associated with varying amounts of strain and unintentional doping induced by the SiC defected interface layer, respectively.  相似文献   

10.
Coherent anti-Stokes Raman scattering (CARS) of carbon nanostructures, namely, highly oriented pyrolytic graphite, graphene nanoplatelets, graphene oxide, and multiwall carbon nanotubes as well CARS spectra of thymine (Thy) molecules adsorbed on graphene oxide were studied. The spectra of the samples were compared with spontaneous Raman scattering (RS) spectra. The CARS spectra of Thy adsorbed on graphene oxide are characterized by shifts of the main bands in comparison with RS. The CARS spectra of the initial nanocarbons are definitely different: for all investigated materials, there is a redistribution of D- and G-mode intensities, significant shift of their frequencies (more than 20 cm-1), and appearance of new modes about 1,400 and 1,500 cm-1. The D band in CARS spectra is less changed than the G band; there is an absence of 2D-mode at 2,600 cm-1 for graphene and appearance of intensive modes of the second order between 2,400 and 3,000 cm-1. Multiphonon processes in graphene under many photon excitations seem to be responsible for the features of the CARS spectra. We found an enhancement of the CARS signal from thymine adsorbed on graphene oxide with maximum enhancement factor about 105. The probable mechanism of CARS enhancement is discussed.  相似文献   

11.
A theoretical model supported by experimental results explains the dependence of the Raman scattering signal on the evolution of structural parameters along the amorphization trajectory of polycrystalline graphene systems. Four parameters rule the scattering efficiencies, two structural and two related to the scattering dynamics. With the crystallite sizes previously defined from X-ray diffraction and microscopy experiments, the three other parameters (the average grain boundaries width, the phonon coherence length, and the electron coherence length) are extracted from the Raman data with the geometrical model proposed here. The broadly used intensity ratio between the C–C stretching (G band) and the defect-induced (D band) modes should be used to measure samples with crystallite sizes larger than the phonon coherence length, which is found equal to 32 nm. The Raman linewidth of the G band is more appropriate to characterize the crystallite sizes below the phonon coherence length, down to the average grain boundaries width, which is found to be 2.8 nm. “Ready-to-use” equations to determine the crystallite dimensions based on the Raman spectroscopy data are given.  相似文献   

12.
Surface enhanced Raman spectrum of graphene was obtained by modifying graphene with Ag nano-particles. The doublet of D band and 2D band was observed due to surface enhanced Raman scattering (SERS) enhancement and relaxation of the selection rules originated from the interaction of Ag nano-particles and graphene. The difference in the doublet of D band in which the separation between the two peaks is 11 cm−1 is close to the theoretical value of 9 cm−1 and can be attributed to the disorder and edge effect. The doublet of 2D band can be assigned to the asymmetry of dispersion relation along KM and KГ respectively. The phonon mode at 1510 cm−1 can be associated with the iTO phonon near ГK/4. This confirms the phonon dispersion based on double resonance (DR) theory in iTO branch.  相似文献   

13.
《Ceramics International》2022,48(8):10677-10687
Aluminium hydroxide (Al(OH)3) was prepared by chemical reaction of the Al(NO3)3 in alkaline medium. The as-prepared powder was heated in the temperature range 250 °C to 1250 °C for studying the structural phase transformation at different stages of the heat treatment. The synchrotron x-ray diffraction patterns confirmed a structural transformation of Al(OH)3 through different (Boehmite, γ, θ, δ, and α) polymorphic phases of Al2O3 on increasing the heat treatment temperature. The samples in Boehmite (γ-AlOOH) and α- Al2O3 phases showed Raman active modes, whereas the intermediate (meta-stable) multi-phased structure showed weak Raman active peaks. The analysis of UV–visible spectra of the samples indicated two optical band gap energy values in the high energy range 4.50–4.73 eV and low energy range 3.06–3.84 eV. The voltage dependence of current, capacitance and electrical polarization were recorded to study electrical properties in heat treated samples. The capacitance value, derived from the polarization, showed a usual increasing trend on decreasing the measurement frequency (inverse of the time) of driving electric voltage. The measured electrical polarization in the samples was found to be highly correlated to their electrical conductivity and the results are helpful to understand the role of electrical conductivity on exhibiting the apparently ferroelectric properties in high conductive and low polarizable dielectric oxides.  相似文献   

14.
Quantifying ion-induced defects and Raman relaxation length in graphene   总被引:1,自引:0,他引:1  
Raman scattering is used to study disorder in graphene subjected to low energy (90 eV) Ar+ ion bombardment. The evolution of the intensity ratio between the G band (1585 cm−1) and the disorder-induced D band (1345 cm−1) with ion dose is determined, providing a spectroscopy-based method to quantify the density of defects in graphene. This evolution can be fitted by a phenomenological model, which is in conceptual agreement with a well-established amorphization trajectory for graphitic materials. Our results show that the broadly used Tuinstra-Koenig relation should be limited to the measure of crystallite sizes, and allows extraction of the Raman relaxation length for the disorder-induced Raman scattering process.  相似文献   

15.
采用激光共聚焦拉曼技术获得聚丙烯腈基碳纤维的拉曼光谱,分析了碳纤维拉曼特征峰在不同的激发功率下的变化。通过Gaussian-Lorentz混合函数拟合得到了不同激发功率下碳纤维拉曼特征峰的拉曼位移、半高宽和R值。研究发现,随着激发功率的增大,碳纤维的拉曼特征峰向低波数方向移动。激发功率在3.8 mW以内,对碳纤维的拉曼位移和半高宽影响较小;激发功率不超过3.2 mW,R值基本保持不变。研究还发现,在较高的激发功率下,碳纤维表面发生了无定形态向结晶态的转变,石墨微晶尺寸有所增大,碳纤维局部表面结构遭到破坏。  相似文献   

16.
Graphene field-effect transistors were fabricated with mechanically exfoliated single-layer graphene (SLG) and bilayer graphene (BLG) sheets and the functionalization effects of bromophenyl groups derived from a diazonium compound on its transfer properties were explored. Spectroscopic and electrical studies reveal that the bromophenyl grafting imposes p-doping to both SLG and BLG. The modification of SLG by bromophenyl groups significantly reduces the hole carrier mobility and the saturation current in SLG transistors, suggesting an increase in both long-range impurity and short-range defect scattering. Unexpectedly, the bromophenyl group functionalization on BLG does not obviously increase both types of scattering, indicating that the BLG is relatively more resistant to charge- or defect-induced scattering. The results indicate that chemical modification is a simple approach to tailor the electrical properties of graphene sheets with different numbers of layers.  相似文献   

17.
Although various applications extensively utilize polymer-assisted graphene transfer step, the role of residual polymer on graphene was not well-understood. Here, we report the effect of poly (methyl methacrylate) (PMMA) on chemical vapor deposition-grown hexagonal graphene via Raman spectroscopy. Analysis of bare-, PMMA-covered supported, and PMMA-covered suspended graphene exhibits that their G and 2D band positions are progressively downshifted in that order. Mapping of spatial G and 2D band shifts into doping and strain contributions shows that PMMA residue exerts moderate 0.15% tensile strain on graphene/substrate, as compared to that of bare graphene. During this tensile strain, residual PMMA-covered graphene maintains its doping level as much as bare graphene does.  相似文献   

18.
When photons impinge on a substrate, most scatter with the same frequency (elastic scattering or Rayleigh dispersion) and only 10?7 scatter with a different energy (inelastic scattering). This inelastic interaction (Raman scattering) exchanges energy in the region of molecular vibrational transitions for crystalline and amorphous materials. Raman bands in a spectra represent vibrational transitions, like infrared, however the selection rules are different. Typically, the vibrations that are intense in Raman are weak in infrared and vice versa. A remarkable feature of the Raman effect is that it is highly sensitive to nanocrystals, even below 4 nm, which are too small to generate XRD patterns. Plasmonic enhancement, like surface‐enhanced Raman spectroscopy (SERS) boost the Raman signal by 104, providing single‐molecule detection capability. Glass, quartz, and sapphire are transparent to Raman effect (depending on the energy of the incident excitation radiation), which makes it ideal to examine materials under reaction conditions (in‐situ cells and operando reactors that operate over a broad range of temperature, pressures, and environments). Raman spectroscopy emerged in the 1930s; however, infrared spectrometry displaced it. With the advent of powerful lasers in the 1970s, more researchers began to apply Raman routinely. In 2019, the Web of Science indexed 20 400 articles mentioning Raman against 50 000 articles mentioning infrared. Chemical engineers apply Raman less frequently than in material science, physical chemistry, and applied physics, with 887 articles vs 6250, 3700, and 3510 for the other disciplines. A bibliometric analysis identified four research clusters centred on thin films and optics, graphene and nanocomposites, nanoparticles and SERS, and photocatalyst.  相似文献   

19.
Raman spectroscopy has been used to characterize multiwall carbon nanotubes (MWNTs) styrene-butadiene rubber (SBR) composites. Raman spectra of the MWNTs/SBR composites excited at different excitation wavelengths show that the dependence of the D band of carbon nanotubes on the laser energy has the same behavior as that of pure MWNTs. Raman spectra are shown to be sensitive to the state of dispersion of carbon nanotubes in the polymeric medium. On the other hand, analysis of Raman spectra of uniaxially stretched composites reveals a weak interface between the polymer and the nanotube surface.  相似文献   

20.
In this paper we report the characterization of linear carbon chains encapsulated in multiwalled carbon nanotubes by using Raman spectroscopy and transmission electron microscopy. The chains are characterized by strong vibrational peaks around 1850 cm−1 and both the frequency and intensity of these peaks were found to be dependent on laser excitation energy. Furthermore, resonance Raman spectroscopy was used for constructing the resonance window of the linear carbon chains. The Raman spectroscopy data showed that long chains have lower highest occupied molecular orbital–lowest unoccupied molecular orbital energy gaps and weaker carbon–carbon bonds. Besides the spectroscopy evidence for the linear carbon chain, we used scanning transmission electron microscopy/electron energy loss spectroscopy analysis of the nanotube cross section to unambiguously show the existence of a 1D structure present within the innermost carbon nanotube with an unprecedented clarity compared to previous reports on this kind of system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号