首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
TiO2 micro-flowers were made to bloom on Ti foil by the anodic oxidation of Ti-protruding dots with a cylindrical shape. Arrays of the Ti-protruding dots were prepared by photolithography, which consisted of coating the photoresists, attaching a patterned mask, illuminating with UV light, etching the Ti surface by reactive ion etching (RIE), and stripping the photoresist on the Ti foil. The procedure for the blooming of the TiO2 micro-flowers was analyzed by field emission scanning electron microscopy (FESEM) as the anodizing time was increased. Photoelectrodes of dye-sensitized solar cells (DSCs) were fabricated using TiO2 micro-flowers. Bare TiO2 nanotube arrays were used for reference samples. The short-circuit current (Jsc) and the power conversion efficiency of the DSCs based on the TiO2 micro-flowers were 4.340 mA/cm2 and 1.517%, respectively. These values of DSCs based on TiO2 micro-flowers were higher than those of bare samples. The TiO2 micro-flowers had a larger surface area for dye adsorption compared to bare TiO2 nanotube arrays, resulting in improved Jsc characteristics. The structure of the TiO2 micro-flowers allowed it to adsorb dyes very effectively, also demonstrating the potential to achieve higher power conversion efficiency levels for DSCs compared to a bare TiO2 nanotube array structure and the conventional TiO2 nanoparticle structure.  相似文献   

2.
A flexible dye-sensitized solar cell (DSSC) was fabricated using a photoanode consisting of an array of TiO2 nanotubes (TNT) filled with a nanocomposite of TiO2 (P90) and nanographite. The array of TNT was obtained by anodic oxidation of Ti foil, and this Ti foil with TNT was used as the photoanode of the DSSC. Each tube in the array has an average diameter of 100 nm. The morphologies of the array of TNT were obtained both after and before filling them with the TiO2/graphite nanocomposite, using a field-emission scanning electron microscopy (FE-SEM). DSSC with photoanode consisting of the nanocomposite (photoanode designated as Graphite/P90-TNT) rendered a light-to-electricity conversion efficiency (η) of 5.75%. In contrast, the cells with photoanodes consisting of only TNT (photoanode designated as TNT) and TNT filled with P90-TiO2 (photoanode designated as P90-TNT) exhibited efficiencies (η) of 4.44% and 5.14%, respectively. The enhancements in the η’s in favor of the cells with P90-TNT and Graphite/P90-TNT were attributed to the filled P90 and nanocomposite, respectively. The filled particles were assumed to provide more conductive pathways for electron transfer and prolonged lifetime for electrons in the film of TNT. The results were substantiated by light-absorption values, incident-photo-to-current efficiency (IPCE) curves, Nyquist and Bode plots of electrochemical impedance spectroscopy (EIS), and photopotential transient curves.  相似文献   

3.
A platinum/single-wall carbon nanotube (Pt/SWCNT) film was sprayed onto a flexible indium-doped tin oxide coated polyethylene naphthalate (ITO/PEN) substrate to form a counter electrode for use in a flexible dye-sensitized solar cell using a vacuum thermal decomposition method at low temperature (120 °C). The obtained Pt/SWCNT electrode showed good chemical stability and light transmittance and had lower charge transfer resistance and higher electrocatalytic activity for the I3/I redox reaction compared to the flexible Pt electrode or a commercial Pt/Ti electrode. The light-to-electric energy conversion efficiency of the flexible DSSC based on the Pt/SWCNT/ITO/PEN counter electrode and the TiO2/Ti photoanode reached 5.96% under irradiation with a simulated solar light intensity of 100 mW cm−2. The efficiency was increased by 25.74% compared to the flexible DSSC with an unmodified Pt counter electrode.  相似文献   

4.
The compression method was applied for the preparation of plastic TiO2 porous films on a conductive indium–tin oxide (ITO)-coated polyethylene naphthalate (PEN) substrate at low temperature for the generation of high-efficiency plastic dye-sensitized solar cells (DSCs). The compression parameters, including pressure and time, were varied in order to determine their effect on the photovoltaic performance of the plastic DSCs. The results from electrochemical impedance spectroscopy (EIS) showed that charge transport resistance in the porous TiO2 films (Rt) gradually decreased when the applied pressure was increased from 0 MPa to 150 MPa, which indicated a better connection between the TiO2 nanoparticles and electron transport in the TiO2 films. In addition, a longer press time led to an increased resistance of electron recombination (Rct) and an increased charge-collection efficiency. After optimization of the compression parameters, the efficiency of energy conversion was increased by approximately 81.6%. In addition, the efficiency of energy conversion was increased by an additional 4.65% under AM1.5 illumination.  相似文献   

5.
Ke Fan  Bo Chai  Ke Dai 《Electrochimica acta》2010,55(18):5239-5244
The dye-sensitized solar cells (DSSCs) using Ti foil supporting substrate for fabricating nanocrystalline TiO2 flexible film electrodes were developed, intending to improve the photoelectrochemical properties of flexible substrate-based DSSCs. The obtained cells were characterized by electrochemical impedance spectra (EIS), open circuit voltage decay (OCVD) measurement and Tafel plots. The experimental results indicate that the most important advantage of a Ti foil-based TiO2 flexible electrode over a FTO glass-based electrode lies in its reduced sheet resistance, electron traps, and the retarded back reaction of electrons with tri-iodine ions in DSSCs. All above characteristics for the Ti substrate TiO2 films are beneficial for decreasing the charge recombination in the TiO2 electrode and prolonging the electron lifetimes for the DSSCs, as well as improvement of the overall solar conversion efficiency. The photocurrent of the cell fabricated with the Ti foil-based flexible electrode increased significantly, leading to a much higher overall solar conversion efficiency of 5.45% at 100 mW/cm2 than the cell made with FTO glass-based TiO2 electrodes. Above results demonstrate that Ti foil is a potential alternative to the conventional FTO glass substrate for the DSSCs.  相似文献   

6.
A novel solid-state hierarchically structured ZnO dye-sensitized solar cell (DSC) was assembled by using TiO2 as filler in polyethylene oxide (PEO)/polyethylene glycol (PEG) electrolytes and ZnO nanocrystalline aggregates as photoanode film. Under optimized composite polyelectrolyte containing PEO/oligo-PEG/TiO2/LiI/I2 the photovoltaic performance of the solid-state ZnO DSCs was significantly better, with an overall conversion efficiency (η) of 1.8% under irradiation of 100 mW/cm2, which was higher than those of the cells with PEO/TiO2/LiI/I2 (η = 1.1%) or PEO/oligo-PEG/LiI/I2 electrolyte (η = 1.5%). Further, the hierarchically structured ZnO-based cell showed a higher η value of 2.0% under 60 mW/cm2 radiation. The morphologies, ionic conductivity of three different composite electrolytes and their performance to the DSCs were also studied by FESEM, IV data, IPCE and EIS.  相似文献   

7.
Electrophoretic deposition (EPD) method is employed to obtain mesoporous TiO2 film on a titanium (Ti) foil; the film is then mechanically compressed and sintered at 350 °C before being subjected to dyeing. A comprehensive study was made on the mechanistic aspects of the EPD process. The dye-sensitized solar cell (DSSC) using the thus formed TiO2 film rendered a power conversion efficiency (Eff.) of 6.5%. Effects of various compression pressures on the photovoltaic parameters and on other characteristic parameters of the pertinent DSSCs are studied. Electrochemical impedance spectroscopy (EIS) is applied for the first time, using a novel equivalent model, to study the impedance behavior of the DSSC with this type of TiO2 film. We also obtain characteristic parameters of the TiO2 photoanode by using EIS. The coordination number of the TiO2 film, and the ratio of charge transfer resistances of electron recombination and electron transport are also obtained and analyzed. Moreover, we employ a multilayer approach and increase the film thickness to prepare TiO2 films with the same coordination number and porosity; DSSCs using such TiO2 films obtained from P90 and P25 rendered efficiencies of 6.5% and 5.24%, respectively. Scanning electron microscopy (SEM) micrographs are obtained to characterize the TiO2 films formed by the EPD technique and laser-induced transient technique is used to estimate the electron lifetime in the TiO2 films.  相似文献   

8.
Ag–TiO2 composite film was supported on indium–tin oxide glass (ITO) by a dip‐coating and subsequent photodeposition procedure. The composite film was employed as the photoanode for photoelectrocatalytic (PEC) degradation of Acid Orange II. The degradation efficiency for the PEC process on the Ag–TiO2/ITO electrode with a 0.8 V anodic bias is significantly higher than that for a photocatalytic process on Ag–TiO2/ITO film or for a PEC process on a neat TiO2/ITO photoanode. A new PEC technology with a pulse anodic bias was also proposed in order to solve the problem of the loss of deposited Ag from the Ag–TiO2/ITO. It was found that the PEC process with a 4.2 V pulse anodic bias could much more efficiently degrade Acid Orange II than that with a constant anodic bias of 0.8 V or 4.2 V. Moreover, when the duration of the open and close circuit time was identical, the treatment efficiency was observed to be optimal. Copyright © 2003 Society of Chemical Industry  相似文献   

9.
We have studied the performance of dye-sensitized solar cells by employing natural dye “anthocyanins” extracted from the tomato slurry as a sensitizer for the TiO2/CuO photoanode. The extracts were anchored on TiO2/CuO films deposited on an ITO substrate which was used as a photoanode. The dye adsorbed TiO2/CuO films electrode, the copper plate as a counter electrode, and iodolyte as an electrolyte were assembled into DSSCs. The conversion efficiency of the DSSCs was found to be 2.96% with a VOC of 0.615 V, JSC of 6.6 mA/cm2, and an FF of 0.73. This work highlights the use of contribution of the tomato slurry as a natural sensitizer to enhance the efficiency of DSSCs.  相似文献   

10.
Zhu G  Su F  Lv T  Pan L  Sun Z 《Nanoscale research letters》2010,5(11):1749-1754
Quantum dot-sensitized solar cells based on fluorine-doped tin oxide (FTO)/Au/TiO2/CdS photoanode and polysulfide electrolyte are fabricated. Au nanoparticles (NPs) as interfacial layer between FTO and TiO2 layer are dip-coated on FTO surface. The structure, morphology and impedance of the photoanodes and the photovoltaic performance of the cells are investigated. A power conversion efficiency of 1.62% has been obtained for FTO/Au/TiO2/CdS cell, which is about 88% higher than that for FTO/TiO2/CdS cell (0.86%). The easier transport of excited electron and the suppression of charge recombination in the photoanode due to the introduction of Au NP layer should be responsible for the performance enhancement of the cell.  相似文献   

11.
A new fabrication method of photoanodes for dye-sensitized solar cells (DSCs) is proposed using partially N3-dyed-TiO2 nanoparticle dispersions. The photoanode fabrication method presented here is contrasted with a conventional low-temperature compression process, in that a time-consuming dye-adsorption step can be omitted, making DSCs more adaptable to a continuous printing process. The effects of the amount of dye-loadings, the degree of compression, and the film thickness on photovoltaic performances were examined. All processes were conducted at room temperature. The optimized film composed of partially dyed-TiO2 led to sufficient interparticle connections to reach a power conversion efficiency of 5.0% under 100 mW cm−2 AM1.5 illumination.  相似文献   

12.
Negative-charged polystyrene (PS) microspheres were prepared through a soap-free emulsion polymerization method using potassium persulfate as initiator. Three-dimensionally ordered macroporous TiO2 films were fabricated using the high-quality PS colloidal crystals templates obtained via a horizontal deposition method. The as-prepared macroporous TiO2 films were applied as the photoanodes in dye-sensitized solar cell (DSSC). The microstructure of the products were characterized by X-ray diffractometer, fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption–desorption analyzer. The results showed that the macroporous TiO2 films replicated well the 3D ordered structure derived from PS colloidal crystal templates and revealed a relatively large specific surface area (69.99 m2/g), which could increase the capacity of TiO2 film anode for absorbing dyes and scattering light. The photocurrent–voltage (IV) characteristics of DSSC were measured by a digital source meter under simulated solar light. The results indicated that the introduction of an ordered macroporous TiO2 interfacial layer increased the photovoltaic conversion efficiency, which was improved by 68 % from 3.61 to 6.08 %, as compared to a device using a bare P25 TiO2 photoanode. Our results showed that the hierarchically ordered macroporous TiO2 bilayer films photoanode for DSSC could be helpful to improve the photovoltaic conversion efficiency.  相似文献   

13.
The introduction of light scattering in the photoanodes of dye-sensitized solar cells is one of the most effective approaches to enhance their photovoltaic performance. In this work, we prepared submicron SiO2/TiO2 core/shell particles and embedded these particles in the nanostructured TiO2 photoanodes for light to scatter in the dye-sensitized solar cells. Due to the large difference in the refractive index between the SiO2 core and the TiO2 shell, the embedded submicron SiO2/TiO2 core/shell particles showed strong light scattering effect. Light absorbance of the dyed photoanode with the embedded SiO2/TiO2 particles for light scattering was found to be three times stronger than the one without light scattering particles over a wide wavelength range. The power conversion efficiency of dye-sensitized solar cells was increased by about 50% after the introduction of light scattering SiO2/TiO2 core/shell particles in the photoanode. This work will provide a base for further enhancement in the photovoltaic performance of dye-sensitized solar cells by optimizing the submicron SiO2/TiO2 core/shell particles and the photoanodes.  相似文献   

14.
Photoelectrodes of mixed microsized TiO2 aggregates and individually dispersed TiO2 nanocrystallites with different ratios were fabricated and studied for improved power conversion efficiency in dye-sensitized solar cells (DSCs). TiO2 aggregates/nanocrystallites composites possess several advantages for high performance of DSCs, including the light scattering by the microsized TiO2 aggregates and the high surface area of nanocrystallites both in aggregates and individually dispersed. A high power conversion efficiency of 7.59% was achieved with mixed TiO2 aggregates/nanocrystallites photoelectrode using conventional dye N3, without applying anti-reflection coating, back-scattering layer, or chemical treatment. The electron transport properties of DSCs with mixed photoelectrodes were investigated by electrochemical impedance spectra, and the results showed that such a photoelectrode with mixed aggregates and nanocrystallites possess better connectivity for efficient electron transport.  相似文献   

15.
4-N,N-Dimethylaminopyridine (DMAP) was introduced into poly(ethyleneoxide)/oligo(ethylene glycol) (PEO/PEG) electrolytes for dye-sensitized solar cells (DSCs). The improved photovoltaic performance of DMAP-doped DSCs was attributed to the integrated effects of the upward displacement of the TiO2 band edge and the decrease in the electron recombination rate. Remarkably, the presence of DMAP suppresses electron recombination via two combined pathways involving the dissociation of triiodide to iodide by a complexation reaction and a modification of the surface state distribution in the band gap of TiO2. With the addition of DMAP, the open-circuit voltage enhances dramatically. The short-circuit photocurrent density has a small increase at low DMAP concentration and drops afterwards. The power conversion efficiency is 4.07%, which corresponds to a 63% increase over that of the DSC without DMAP.  相似文献   

16.
We have built TiO2 Dye sensitized solar cells (DSSCs) that combined flexible TiO2 photoanodes coated on ITO/PET substrates with a gel electrolyte based on PVDF-HFP-SiO2 films. Titanium isopropoxide (TiP4) was used as additive to TiO2 nanoparticles for increasing power conversion efficiency in Dye sensitized solar cell electrodes prepared at low-temperature (130 °C). An efficiency ηAM1.5G = 3.55% on ITO/PET substrates is obtained at 48 mW/cm2 illumination with a standard liquid electrolyte based on methoxypropionitrile. Among several solvents forming gels with PVDF-HFP-SiO2, N-methyl (pyrrolidone) (NMP) was found to enable the most stable devices. A power conversion efficiency ηAM1.5G = 2% was obtained under 10 mW/cm2 with flexible TiO2-ITO-PET photoanodes and the PVDF-HFP-SiO2 + NMP gel electrolyte.  相似文献   

17.
Quasi solid state dye-sensitized solar cells (DSSCs) have been fabricated with organic sol or TiCl4 modified TiO2 and porous TiO2 photoanode and a triphenylamine-based dye (TPAR3) used as photosensitizer. Dark current measurements suggested that both modified TiO2 photoelectrodes had significantly reduced the recombination rate of photoelectrons due to the reduced bare FTO surface in comparison to porous photoelectrode. The DSSC based on modified TiO2 photoelectrodes showed improved photovoltaic parameters compared to the porous TiO2 photoelectrode. The overall power conversion efficiency (PCE) is 3.27%, 4.73% and 6.8% for porous, TiCl4 modified and sol modified TiO2 photoelectrodes, respectively. The improved PCE with modified TiO2 electrodes was attributed to the formation of a compact layer. This effectively improves adherence of TiO2 to FTO surface, providing a larger TiO2/FTO contact area and reducing the electron recombination by blocking the direct contact between redox electrolyte and the conductive FTO surface and enhances the electron collection efficiency.  相似文献   

18.
The super-hydrophilic amorphous titanium dioxide (TiO2) thin film was prepared by plasma-enhanced chemical vapor deposition (PECVD) process for an application to dehumidifying finned-tube heat exchangers. The chemical components and surface structure were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). The wettability and long-term durability were investigated by measuring the water contact angle and by performing wet/dry cycles. The samples were subjected to 1000 times of wet/dry cycles to establish long-term durability. The water contact angle of the amorphous TiO2 thin film was about 8° at as-deposited film with O2 plasma treatment and was about 15° after 1000 wet/dry cycles. The amorphous TiO2 thin film had excellent wettability and long-term durability under full wetting conditions.  相似文献   

19.
The TiO2 photoanode film with hierarchical structure which consists of porous structure and spinodal phase separation structure with macroporous continuous skeleton was fabricated by photopolymerization induced phase separation method. The influence of the different photomonomers, different coating layers and different heat treatment temperatures on the structure and photoelectric property of TiO2 film has been investigated and the possible mechanism was proposed. The performances of the TiO2 anode film were characterized by scanning electron microscopy, X-ray diffraction and I–V test. The results indicated that, in contrast with the TiO2 anode film with single structure, the as-prepared TiO2 anode film with hierarchical structure showed higher photoelectric conversion efficiency which is 0.272 %. Even though the photoelectric conversion efficiency is not very high, the strategy presented in the paper should be valuable and it still provides the ideas for the new structure and new preparation method on photoanode film of dye-sensitized solar cells, meanwhile, it lays the foundation for designing the solar cells with high photoelectric conversion efficiency.  相似文献   

20.
This paper reports an inverted fabrication process for the photoanode of a flexible dye sensitized solar cell (DSSC). This procedure involves assembling a free-standing TiO2 nanowires/nanoparticles hybrid membrane, via high temperature annealing, sputtering an indium tin oxide (ITO) layer onto this membrane, and transferring these onto a polydimethylsiloxane (PDMS) substrate. The inverted procedure prevents thermal decomposition of polymer substrate, whilst enabling effective thermal treatment of the functionalized titanium oxide. The flexible DSSC fabricated in this way has an efficiency of 2.7%, which is comparable with rigid device constructed using similar materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号