首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Realizing mass production of graphene materials at low cost and high quality is urgently required for their real applications. Thermal exfoliation of graphite oxide (GO) is considered as a promising strategy though it normally requires a high exfoliation temperature together with a fast heating rate, making the produced graphenes suffer from high cost and concentrated topological defects. A mild exfoliation of GO at a far lower temperature than the predicted minimum temperature, has been demonstrated by introducing a high vacuum to exert an outward drawing force which helps effective exfoliation of the stacked graphene layers. In this contribution, together with a discussion on the foundation of thermal exfoliation and the general principle for low-temperature exfoliation, we review current strategies and indicate possible novel approaches. Low cost and easy operability are highlighted for the low-temperature exfoliation and the resulting graphene materials are characterized by low defect concentration, and unique and tunable surface chemistry to promote potential mass applications in energy-related areas.  相似文献   

2.
Graphene materials containing different functional groups were prepared from a natural graphite, by means of two different oxidation methods (Hummers and Brodie). It was observed that the differences in the structure of the resultant graphite oxides (GOs) greatly affect the structure of the graphenes resulting from their thermal exfoliation/reduction. Although the oxidation of the graphite was more effective with the modified Hummers method than with Brodie’s method (C/O of 1.8 vs 2.9, as determined by XPS), the former generated a lower residual oxygen content after thermal exfoliation/reduction and a better reconstruction of the 2D graphene structure (with fewer defects). This is explained by the presence of conjugated epoxy and hydroxyl groups in the GO obtained by Brodie’s method, which upon thermal treatment, lead to the incorporation of oxygen into the carbon lattice preventing its complete restoration. Additionally, graphene materials obtained with Brodie’s method exhibit, in general, smaller sheet size and larger surface area.  相似文献   

3.
Yanwu Zhu 《Carbon》2010,48(7):2118-8949
We report a simple yet versatile method to simultaneously achieve the exfoliation and reduction of graphite oxide. By treating graphite oxide powders in a commercial microwave oven, reduced graphite oxide materials could be readily obtained within 1 min. Extensive characterizations showed that the as-prepared materials consisted of crumpled, few-layer thick and electronically conductive graphitic sheets. Using the microwave exfoliated graphite oxide as electrode material in an ultracapacitor cell, specific capacitance values as high as 191 F/g have been demonstrated with KOH electrolyte.  相似文献   

4.
A facile method for preparing functionalized graphene oxide single layers with nitroxide groups is reported herein. Highly oxidized graphite oxide (GO = 83.1%) was obtained, slightly modifying an improved Hummer’s method. Oxoammonium salts (OS) were investigated to introduce nitroxide groups to GO, resulting in a one-step functionalization and exfoliation. The mechanisms of functionalization/exfoliation are proposed, where the oxidation of aromatic alcohols to ketone groups, and the formation of alkoxyamine species are suggested. Two kinds of functionalized graphene oxide layers (GOFT1 and GOFT2) were obtained by controlling the amount of OS added. GOFT1 and GOFT2 exhibited a high interlayer spacing (d0001 = 1.12 nm), which was determined by X-ray diffraction. The presence of new chemical bonds C–N (∼9.5%) and O–O (∼4.3%) from nitroxide attached onto graphene layers were observed by X-ray photoelectron spectroscopy. Single-layers of GOFT1 were observed by HRTEM, exhibiting amorphous and crystalline zones at a 50:50 ratio; in contrast, layers of GOFT2 exhibited a fully amorphous surface. Fingerprint of GOFT1 single layers was obtained by electron diffraction at several tilts. Finally, the potential use of these materials within Nylon 6 matrices was investigated, where an unusual simultaneous increase in tensile stress, tensile strain and Young’s modulus was observed.  相似文献   

5.
Microwave‐induced reduction of graphite oxide (GO) is a promising method for rapid and scalable production of graphene. However, homogeneous incorporation of thus prepared graphene into polymer matrix is still a hard task. In this article, we present a ball‐milling assisted wet compounding method for the fabrications of microwave‐reduced GO (MRGO)/polymer composites. MRGO powders were added into a solution of polystyrene (PS) and then mechanically exfoliated in a stirring mill. Scanning electron microscopy and transmission electron microscopy investigations show that the graphene sheets have been homogeneously dispersed in the PS matrix. The composites show pronouncedly improved properties. The thermal degradation temperature of composites increased by 34°C with the addition of 5wt% MRGO in PS. Up to 76% improvement of storage modulus (at 30°C) is achieved by compounding with 10wt% MRGO.POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

6.
The synthesis and characterization of graphene-like materials, prepared by plasma processing of graphite oxide is described. The thermal exfoliation and reduction of graphite oxide was obtained by passing an aerosol of coarsely ground graphite oxide with no solvent through a low-power (900 W) microwave generated plasma, with argon as the carrier and plasma gas. The reduced material obtained by this aerosol-through-plasma method was characterized by powder X-ray diffraction, Raman, X-ray photoelectron and solid state 13C NMR spectroscopy, transmission electron microscopy, thermo-gravimetric and elemental analysis and surface area analysis methods. These materials consist of single to few-layers of graphene and displays high disorder, large surface areas (∼640 m2/g) and low (<4%) oxygen content.  相似文献   

7.
Songfeng Pei  Hui-Ming Cheng 《Carbon》2012,50(9):3210-3228
Graphene has attracted great interest for its excellent mechanical, electrical, thermal and optical properties. It can be produced by micro-mechanical exfoliation of highly ordered pyrolytic graphite, epitaxial growth, chemical vapor deposition, and the reduction of graphene oxide (GO). The first three methods can produce graphene with a relatively perfect structure and excellent properties, while in comparison, GO has two important characteristics: (1) it can be produced using inexpensive graphite as raw material by cost-effective chemical methods with a high yield, and (2) it is highly hydrophilic and can form stable aqueous colloids to facilitate the assembly of macroscopic structures by simple and cheap solution processes, both of which are important to the large-scale uses of graphene. A key topic in the research and applications of GO is the reduction, which partly restores the structure and properties of graphene. Different reduction processes result in different properties of reduced GO (rGO), which in turn affect the final performance of materials or devices composed of rGO. In this contribution, we review the state-of-art status of the reduction of GO on both techniques and mechanisms. The development in this field will speed the applications of graphene.  相似文献   

8.
Graphite oxides (GOs) synthesized by Brodie’s and Hummers’ methods are significantly different with respect to hydration, solvation and exfoliation properties. Hummers GO is more easily intercalated by liquid water and alcohols, exhibiting osmotic type of swelling. In contrast, Brodie GO shows crystalline swelling in alcohol solvents with step-like insertion of methanol or ethanol monolayers. However, the stronger hydration and easier dispersion in water observed for Hummers GO do not correlate with better dispersion of graphene powder obtained by thermal exfoliation. Higher surface area graphene powder was obtained by exfoliation of Brodie GO, while the temperature of its exfoliation is about 75 °C higher than that for the studied sample of Hummers GO. It is suggested that higher exfoliation temperature and better crystallinity of GO are important factors for preparation of graphene powder using thermal exfoliation.  相似文献   

9.
By means of manipulating the oxygen content in graphite oxides (GO) and/or graphene-based materials, we demonstrate that the microwave absorption capacity of carbon materials is highly dependent on their chemical composition and structure. The increase of oxygen in GO remarkably decreases its microwave absorption capacity due to the size decrease of the π–π conjugated structure in these materials, and vice versa. It was revealed that graphene is an excellent microwave absorbent while GO with poor microwave absorption capacity, the unoxidized graphitic region “impurities” in GO act as the microwave absorbents to initiate the microwave-induced deoxygenation. The addition of a small amount graphene to GO leads to avalanche-like deoxygenation reaction of GO under microwave irradiation (MWI) and graphene formation, which was used for electrode materials in supercapacitors. The interaction between microwaves and graphene or graphene-based materials may be used for the fabrication of a variety of graphene-based nanocomposites with exceptional properties and a wealth of practical applications.  相似文献   

10.
《Ceramics International》2015,41(8):9505-9513
A simple and efficient method was introduced for the high-conversion preparation of graphene oxide (GO) from large graphite flakes (average flake size=100 μm) using a simplified Hummer׳s method. Natural reducing agents such as lemon juice and vinegar were compared with hydrazine (N2H4) as potential reducing agents. Graphene was prepared by chemical reduction of GO because this method was low cost and could be used for large-scale graphene production. This one-pot graphene preparation was performed at room temperature. Different degrees of oxidation of graphite flakes were obtained by stirring graphite in a mixture of sulfuric acid and potassium permanganate at different oxidation times, and highly exfoliated GO sheets were produced. GO was subsequently reduced effectively by lemon juice, a new, green, and potential reducing agent with pH 2.3. This reduced GO exhibited a high electrical conductance of 24.6 μS attributed to its higher C/O ratio (≈8:2) compared with other samples.  相似文献   

11.
Jincheng Liu 《Carbon》2010,48(8):2282-9829
Graphene, functionalized with oleylamine (OA) and soluble in non-polar organic solvents, was produced on a large scale with a high yield by combining the Hummers process for graphite oxidation, an amine-coupling process to make OA-functionalized graphite oxide (OA-GO), and a novel reduction process using trioctylphosphine (TOP). TOP acts as both a reducing agent and an aggregation-prevention surfactant in the reduction of OA-GO in 1,2-dichlorobenzene (DCB). The reduction of OA-GO is confirmed by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and Raman spectroscopy. The exfoliation of GO, OA-GO, and OA-functionalized graphene (OA-G) is verified by atomic force microscopy. The conductivity of TOP-reduced OA-G, which is deduced from the current-voltage characteristics of a vacuum-filtered thin film, shows that the reduction of functionalized GO by TOP is as effective as the reduction of GO by hydrazine.  相似文献   

12.
Burcu Saner 《Fuel》2010,89(8):1903-25218
An improved, safer and mild method was proposed for the exfoliation of graphene like sheets from graphite to be used in fuel cells. The major aim in the proposed method is to reduce the number of layers in the graphite material and to produce large quantities of graphene bundles to be used as catalyst support in polymer electrolyte membrane fuel cells. Graphite oxide was prepared using potassium dichromate/sulfuric acid as oxidant and acetic anhydride as intercalating agent. The oxidation process seemed to create expanded and leafy structures of graphite oxide layers. Heat treatment of samples led to the thermal decomposition of acetic anhydride into carbondioxide and water vapor which further swelled the layered graphitic structure. Sonication of graphite oxide samples created more separated structures. Morphology of the sonicated graphite oxide samples exhibited expanded the layer structures and formed some tulle-like translucent and crumpled graphite oxide sheets. The mild procedure applied was capable of reducing the average number of graphene sheets from 86 in the raw graphite to nine in graphene-based nanosheets. Raman spectroscopy analysis showed the significant reduction in size of the in-plane sp2 domains of graphene nanosheets obtained after the reduction of graphite oxide.  相似文献   

13.
Binary composite of graphene/poly(ethylene oxide) (PEO) with microwave absorption property is prepared by in situ reduction process. Graphite oxide (GO) is prepared from flake graphite by modified Hummers' method and further dispersed in distilled water to get GO solution. Then, PEO powder is slowly added into GO solution to get GO/PEO solution, and graphene/PEO composites is prepared via a facile and quick reduction process in GO/PEO solution. PEO and graphene/PEO composites are characterized by scanning electron microscopy, atomic force microscopy, thermo gravimetric analysis, and vector network analyzer. The results show that graphene is uniformly dispersed in PEO matrix because GO and PEO can be uniformly dispersed at molecular level due to their water‐solubility and the agglomeration of graphene can be prevented by PEO macromolecular chains during in situ reduction process. Graphene/PEO composite has better thermal stability than PEO, which can be explained by the graphene restoration of sp2 bonded carbon structure. Meanwhile, graphene/PEO composite shows excellent microwave absorption property at low grapheme content. The minimum reflection loss of graphene/PEO composite is up to −20.0 dB when the content of graphene is only 1 wt%. POLYM. COMPOS., 35:461–467, 2014. © 2013 Society of Plastics Engineers  相似文献   

14.
Monolayer graphene from graphite oxide   总被引:1,自引:0,他引:1  
Graphene, a new carbon material, is attracting presently an increasing research interest. It stems from the unique electrical and mechanical properties of graphene predicted by theory. Experimental studies of graphene are, however, severely curtailed by a lack of an appropriate technique for its preparation. Mechanical cleavage of graphite proved to be ineffective, since it yields only very small (a few microns in size) particles of monolayer graphene. The rapidly developing approach based on chemical exfoliation of graphite produces large-area coatings composed primarily of arbitrarily oriented multilayer graphene particles. We have developed a technique for preparation of monolayer graphene sheets involving liquid exfoliation of crystalline graphite, which includes synthesis of graphite oxide by deep oxidation as an intermediate stage. Electron diffraction traces, as well as the variation of diffracted intensities with local orientation of graphene sheets, AFM, and HRTEM images testify to a remarkably good monolayer structure of the graphite oxide particles obtained by our technique. These results open a way to setting up high-efficiency production of monolayer graphene sheets appropriate for electrical and optical measurements and fabrication of structures for use in the field of applications.  相似文献   

15.
Graphene/polybenzimidazobenzophenanthroline nanocomposites were prepared through the liquid-phase exfoliation of graphene oxide (GO) and reduced graphene oxide (rGO) in methanesulfonic acid with subsequent solution mixing. Various chemical and combined chemical-thermal methods were examined to be effective for producing rGO with highly graphitic structure and excellent electrical conductivity. Raman and X-ray photoelectron spectroscopy showed higher degree of reduction of the GO with the combined chemical-thermal method compared to other chemical reduction processes. Structural characterization of the nanocomposites by X-ray diffraction, scanning electron microscopy and transmission electron microscopy showed good exfoliation and dispersion of both GO and rGO fillers in the polymer matrix. The thermogravimetric analysis found that the nanocomposites with rGO have higher onset and maximum weight loss temperatures than those with GO. Compared with the pure polymer, the electrical conductivity of the nanocomposites containing 10 wt% GO and GO reduced by the combined chemical-thermal treatment showed a remarkable increase by four and seven orders of magnitude, respectively. Long-term in-situ thermal reduction was performed to further improve the conductivities of the nanocomposites.  相似文献   

16.
We present the electronic structure evolution from graphite oxide to thermally reduced graphite oxide. Most functional groups were removed by thermal reduction as indicated by high resolution X-ray photoelectron spectroscopy, and the electrical conductivity increased 6 orders compare with the precursor graphite oxide. X-ray absorption spectroscopy reveals that the thermally reduced graphite oxide shows several absorption peaks similar to those of pristine graphite, which were not observed in graphite oxide or chemically reduced graphite oxide. This indicates the better restoration of graphitic electronic conjugation by thermal reduction. Furthermore, the significant increased intensity of Raman 2D band of thermally reduced graphite oxide compared with graphite oxide also suggests the restoration of graphitic electronic structure (π orbital). These results provide useful information for fundamental understanding of the electronic structure of graphite oxide and thermally reduced graphite oxide.  相似文献   

17.
A successful approach and the operational parameters necessary for reduction of graphite oxide (GO) to multilayer graphene using 248 nm excimer laser irradiation in both vacuum and ultrahigh purity N2 background environments is described. The utility of excimer laser reduction is demonstrated by production of simple line and logo patterns using standard microscale lithographic patterning strategies. Multilayer graphene formation is confirmed with Raman and X-ray photoelectron spectroscopies, and the morphology of the processed GO sample is evaluated with scanning electron microscopy. Four-point probe measurements of the excimer laser reduced GO indicate typical sheet resistances of ∼100–500 Ω/sq, which is a significant improvement over other values reported in the literature for other laser-based GO reduction methods.  相似文献   

18.
Hydrazine-reduction of graphite- and graphene oxide   总被引:5,自引:0,他引:5  
We prepared hydrazine-reduced materials from both graphite oxide (GO) particles, which were not exfoliated, and completely exfoliated individual graphene oxide platelets, and then analyzed their chemical and structural properties by elemental analysis, XPS, TGA, XRD, and SEM. Both reduced materials showed distinctly different chemical and structural properties from one another. While hydrazine reduction of graphene oxide platelets produced agglomerates of exfoliated platelets, the reduction of GO particles produced particles that were not exfoliated. The degree of chemical reduction of reduced GO particles was lower than that of reduced graphene oxide and the BET surface area of reduced GO was much lower than that of reduced graphene oxide.  相似文献   

19.
We prepared a series of graphene-like materials by thermal exfoliation/reduction of a graphite oxide (GO) at temperatures between 127 °C and 2400 °C. The extent of the exfoliation and reduction of the GO at different temperatures, as well as the impact on the resultant graphene-like materials (TRGs), were studied through their chemical/structural characterization. The main oxygen loss was observed at 127 °C during the blasting of the GO, which produced its exfoliation into monolayer functionalized TRG with hydroxyl groups and minor amounts of epoxy and carboxyl groups. Above 600 °C, the reduction continued smoothly, with oxygen and hydrogen loss and the conversion of hybridised carbon atoms from sp3 into sp2. 1000 °C appears to be a critical temperature for the efficiency of the reduction process, as the resulting TRG contained <2% oxygen and 81.5% sp2-carbon atoms. The materials obtained at 2000 °C and 2400 °C were almost oxygen-free and the layers exhibited a dramatic restoration of the pristine graphite structure, as confirmed by the increase in the average size of the sp2-domains. The typical disordered stacking of TRGs increases with temperature, although they can be dispersed yielding monolayers at 127 and 300 °C and stacks of up to 4–6 layers above 1000 °C, as determined by AFM.  相似文献   

20.
Reduction largely affects the properties of graphene oxide (GO), because the content of each functional group changes by the oxidation degree. So far no study about re-oxidation and re-reduction of GO has been carried out. Herein, we report the effects of oxidation/reduction cycle of graphite oxide (GtO, multilayered GO) on its composition and electrochemical capacitance property. Electrochemical oxidation and reduction of glassy carbon (GC) were conducted at potentials of +2.0 and −1.1 V (vs. Ag/AgCl), respectively, and then the electrochemical capacitances were measured. According to X-ray photoelectron spectroscopy (XPS) analysis, CC bonds were produced from CH defects of the reduced graphite oxide (rGtO) by the electrochemical re-oxidation. The conductivities of the reduced samples, with CH defects, and re-oxidized samples, with newly produced CC bonds, were high and low, respectively. The high electrochemical capacitance observed for the rGtO electrodes is caused by the activity of the CH defects and good conduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号