首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrical and dielectric properties of polyamide 6 (PA6)/multi-walled carbon nanotubes (MWCNT) nanocomposites prepared by melt mixing were investigated by employing dielectric relaxation spectroscopy in broad frequency (10?2–106 Hz) and temperature ranges (from ?150 to 150 °C). Transmission electron microscopy revealed a good state of CNT dispersion in the polymeric matrix. The percolation threshold (pc) was found to be 1.7 vol.% by using the dependence of both dc conductivity and critical frequency (fc) from dc to ac transition on vol.% concentration in MWCNT. The actual aspect ratio of the nanotubes in the nanocomposites was calculated using a theoretical model (proposed by Garboczi et al.) and the obtained value was correlated with the pc value according to the excluded volume theory. Additionally, the contact resistance (Rc) between the conductive nanotubes was found to be ~105 Ω. Investigation of the temperature dependence of conductivity revealed a charge transport which is controlled by thermal fluctuation-induced tunneling for temperatures up to the glass transition. Finally, it was shown that the addition of nanotubes has no significant influence on the relaxation mechanisms of the PA6 matrix.  相似文献   

2.
The distribution of polarized space charges and their relaxation behavior in high dielectric constant electric conductor/polymer composites are main factors that determine the frequency-dependent dielectric constant and dielectric loss. However, few reports focus on this motif. We present here the dielectric performance and mechanism of a unique kind of composites with multi-layers (coded as [MWCNT/EP]x, where x refers to the number of layers), fabricated by using layer-by-layer casting technique. Each composite layer with same thickness was composed of multi-walled carbon nanotubes (MWCNTs) and epoxy (EP) resin. When the loading of MWCNTs is 0.5 wt%, the four-layer [MWCNT0.5/EP]4 material shows the highest dielectric constant (465 at 1 Hz) and low dielectric loss tangent (0.7 at 1 Hz), about 4 and 2.1 × 10−2 times the values of traditional MWCNT0.5/EP composite, respectively. By investigating the space charge polarization (SCP), Debye polarization and dielectric moduli in [MWCNT/EP]x materials, the complex relationships and the origin among dielectric constant, dielectric loss, frequency and the content of filler were clearly elucidated. The SCP within each layer is different from that between layers. The greatly improved dielectric properties of [MWCNT/EP]x materials are believed to be the reinforced SCP and blocked transport of carriers between every two layers.  相似文献   

3.
The preparation, sintering behaviour, and dielectric properties of low loss LaBO3 ceramics have been investigated. Single-phase LaBO3 powder was synthesized by the conventional solid-state ceramics route and dense ceramics (relative density >96%) with uniform microstructure (grain size ~30 μm) were obtained by sintering at 1300 °C in air. The electrical conductivity of LaBO3 follows the Arrhenius law and the related activation energies for electrical conduction of bulk and grain boundary are 0.62 eV and 0.90 eV, respectively. The LaBO3 ceramics sintered at 1300 °C exhibit excellent microwave dielectric properties with a relative permittivity, ?r  11.8, a quality factor, Q × f0 value ~76,869 GHz (at ~15 GHz), and a negative temperature coefficient of resonant frequency τf  ?52 ppm/°C.  相似文献   

4.
Systematic investigation on phase transition, dielectric and piezoelectric properties of (1-x)K0.5Na0.5Nb0.997Cu0.0075O3-xSrZrO3 (x = 0, 0.03, 0.06, 0.09, 0.12, 0.15, abbreviated as KNNC-100xSZ) ceramics was carried out. Due to the coexistence of orthorhombic and tetragonal phase in a wide temperature range, a diffused polymorphic phase transition (PPT) region was achieved in KNNC with x  0.06. KNNC-12SZ ceramics exhibited high dielectric permittivity (∼1679), low dielectric loss (∼0.02) and small variation (Δe'/ε'25 °C  15%) in dielectric permittivity from −78 °C to 237.3 °C. KNNC-6SZ ceramic possessed a high level of unipolar strain (∼0.15%) and maintained a smaller variation of ±12% under the corresponding electric field of 60 kV cm−1 at 10 Hz from 25 °C to 175 °C. d33*, which was calculated according to the unipolar strain at 60 kV cm−1, was 230 pm V−1 and remained stable below 100 °C. Therefore, our work provided a new promising candidate for temperature-insensitive capacitors and piezoelectric actuators.  相似文献   

5.
LiCuNb3O9 ceramics with the distorted cubic perovskite structure were prepared by a solid-state reaction method. The ceramic exhibited a very large value of permittivity (∼4.4 × 104 at 100 kHz) at room temperature (∼300 K) and a low-temperature dielectric relaxation behaviour following the Arrhenius law. The origin of the giant dielectric response of the LiCuNb3O9 ceramics was correlated with the structure of the ceramics. The barrier layers in the grain boundaries and the mixed-valent structure of Cu+/Cu2+ were found to contribute to the giant permittivity of the ceramics and confirmed by X-ray spectroscopy and complex impedance spectroscopy analyses.  相似文献   

6.
Effect of Gd on microstructural, dielectric and electrical properties has been studied over wide temperature (300–500 K) and frequency range (100 Hz–1 MHz). Gd substitution in CCTO system results in decrease in the grain size and increase of Schottky potential barrier which causes lower value of dielectric constant. The dielectric constant remains nearly constant in temperature range 300–350 K. Doped samples show lower dielectric loss in middle frequency range (~10 kHz–1 MHz) at room temperature. The AC conductivity (σac) obeys a power law, σac = Afn, where n is temperature dependent frequency exponent. The AC conductivity behaviour can be divided into three regions depending on conduction processes and the relevant charge transport mechanisms have been discussed.  相似文献   

7.
This study compares electromagnetic interference (EMI) shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene (MWCNT/PS) composites, i.e., properties such as EMI shielding effectiveness (EMI SE), electrical conductivity, real permittivity and imaginary permittivity. The injection molded (MWCNT-aligned) samples showed lower EMI shielding properties than compression molded (randomly distributed MWCNT) samples that was attributed to lower probability of MWCNTs contacting each other due to MWCNT alignment. The compression molded samples showed higher electrical conductivity and lower electrical percolation threshold than the injection molded samples. The compression molded samples at MWCNT concentrations of 5.00 and 20.0 wt.% showed real permittivity two times and imaginary permittivity five times greater than the injection molded samples. The EMI SE for the compression molded samples at MWCNT concentrations of 5.00 and 20.0 wt.% was 15.0 and 30.0 dB, respectively, significantly greater than EMI SE for the injection molded samples. Lower EMI SE for the injection molded samples was ascribed to lower electrical conductivity, real permittivity (polarization loss) and imaginary permittivity (Ohmic loss). Comparison of the EMI shielding properties of the compression molded versus injection molded samples confirmed that EMI shielding does not require filler connectivity; however it increases with filler connectivity.  相似文献   

8.
Transparent and stable glasses in the chemical composition of Li2O–LiF–B2O3–MO (M = Zn and Cd) have been prepared by a conventional melt quenching method. For these glasses, absorption spectra, structural (XRD, FT-IR, and Raman spectra), thermal (TG–DTA and DSC), dielectric (?′, ?″, tan δ), ac conductivity (σac), and electric modulus (M′ and M″) have been investigated. Amorphous nature of these glasses has been confirmed from their XRD profiles. The LFB glasses with the presence of ZnO or CdO an extended UV-transmission ability has been achieved. The measured FT-IR and Raman spectra have exhibited the vibrational bands of B–O from [BO3] and [BO4] units and Li–O. The dielectric properties (tan δ, dielectric constant (?′), dielectric loss (?″)), electrical modulus and electrical conductivity (σac) of these glasses have also been studied from 100 Hz to 1 MHz at the room temperature. Based on the trends noticed in the ac conductivities, the present glasses could be found useful as battery cathode materials.  相似文献   

9.
The dielectric properties of SrTiO3 ceramics sintered in nitrogen (N2) exhibit a weak temperature- and frequency-dependent giant permittivity (>104) as well as a very low dielectric loss (mostly < 0.02) over a broad temperature range from −100 to 200 °C. Based on the results of ac conductivity and structural analysis, the giant permittivity and low dielectric loss were due to the fully ionized oxygen vacancies and giant defect-dipoles. When further sintering these ceramics in air, the materials exhibit a large temperature- and frequency-dependent high dielectric loss, which were due to the ionization and motion of oxygen vacancies.  相似文献   

10.
BaTiO3/xCu composite ceramics with x = 0–30 wt.% were fabricated by the traditional mixing oxide method and their microstructure, relative density, electric conductivity, permittivity and dielectric loss were measured as a function of the Cu mass fraction. The X-ray diffraction (XRD) patterns indicated that the dense composite has no chemical reaction between BaTiO3 and Cu during sintering, and the relative diffraction intensity of Cu increased with the increase of Cu. The electric properties showed that the percolation threshold of BaTiO3/Cu composites was x = 0.25 and its conductivity increased as the Cu content increased after that. With increasing Cu content up to 30 wt.%, the permittivity (?r) markedly increased from ~3000 for monolithic BaTiO3 to ~8000 at 1 kHz. Additionally, the temperature coefficient of this system was less than 5% in the temperature range of 25–115°C.  相似文献   

11.
《Ceramics International》2016,42(7):8165-8169
Dielectric composites fabricated by combining multi-walled carbon nanotubes (MWCNT) and PbTiO3 (PTO) powder were prepared using a sol–gel process. Well-dispersed PTO powder with various volume ratios of MWCNT was compressed to form a pellet, and then silver electrodes were coated on both sides for electrical measurements. The PTO–MWCNT composite with 0.4 vol% MWCNT showed the highest dielectric constant (912 at 1 kHz), which is approximately 25 times larger than that (37 at 1 kHz) of a pure PbTiO3 pellet. Furthermore, a strong frequency dependence of the dielectric constant in the low frequency range was shown for the PTO–MWCNT composites. Interfacial effects related to dielectric relaxation in composite materials were used to explain an observed increase of the dielectric constant near the percolation threshold.  相似文献   

12.
Hexagonal boron nitride is a material with a unique combination of mechanical, chemical, and electrical properties and therefore of considerable technical and commercial interest. Nevertheless, there exists only very limited knowledge concerning the correlation of microstructure and electrical and dielectrical properties of such materials. In this work, the microstructure, dielectric breakdown resistance (dielectric strength), and low permittivity of different BN ceramics and composites were investigated. Besides exhibiting a very high specific electrical resistivity of 1013–1015 Ω cm, the materials had excellent dielectric strengths (up to 53 kV/mm) and low electrical permeability (4.1). The dielectric strength depended strongly on the porosity and to a lesser extent on the content of secondary phases, whereas the permittivity was influenced by the secondary phases. The aging of the materials in humid air did not significantly alter these values. The permittivity was found to be independent of frequency between 0.1 MHz and 10 MHz and temperature up to 300 °C.  相似文献   

13.
The microstructure, electromagnetic interference (EMI) shielding effectiveness (SE), DC electrical conductivity, AC electrical conductivity and complex permittivity of nanostructured polymeric materials filled with three different carbon nanofillers of different structures and intrinsic electrical properties were investigated. The nanofillers were multiwall carbon nanotubes (MWCNT), carbon nanofibers (CNF) and high structure carbon black (HS-CB) nanoparticles and the polymer was acrylonitrile-butadiene-styrene (ABS). In addition, the EMI SE mechanisms and the relation between the AC electrical conductivity in the X-band frequency range and the DC electrical conductivity were studied. The nanocomposites were fabricated by solution mixing and characterized by uniform dispersion of the nanofillers within the polymer matrix. It was found that, at the same nanofiller loading, the EMI SE, permittivity and electrical conductivity of the nanocomposites decreased in the following order: MWCNT > CNF > CB. MWCNT based nanocomposites exhibited the lowest electrical percolation threshold and the highest EMI SE owning to the higher aspect ratio and electrical conductivity of MWCNT compared to CNF and HS-CB. The AC conductivity in the X-band frequency range was found to be independent of frequency.  相似文献   

14.
In this study, investigations have been made on the crystal structure, surface morphology, dielectric and electrical properties of tungsten doped SrBi2(WxTa1−x)2O9 (0.0  x  0.20) ferroelectric ceramics. Dielectric measurements performed as a function of temperature at 1, 10 and 100 kHz show an increase in Curie temperature (Tc) over the composition range of x = 0.05–0.20. W6+ substitution in perovskite-like units results in a sharp dielectric transition at the ferroelectric Curie temperature with the dielectric constant at their respective Curie temperature increasing with tungsten doping. The dielectric loss reduces significantly with tungsten addition. The temperature dependence of ac and dc conductivity vis-à-vis tungsten content shows a decrease in conductivity, which is attributed to the suppression of oxygen vacancies. The activation energy calculated from the Arrhenius plots is found to increase with tungsten content.  相似文献   

15.
Double-layer materials with one layer being a polyethylene (PE) film and the other layer a multi-wall carbon nanotube (MWCNT)/cyanate ester (CE) resin composite, PE-MWCNT/CE, were prepared. They have high dielectric constant and extremely low dielectric loss. For comparison, MWCNT/CE composites with different contents of MWCNTs were also prepared. Results show that the two kinds of materials have greatly different dielectric properties. With the same content of MWCNTs, the PE-MWCNT/CE material shows a higher dielectric constant and much lower dielectric loss than the MWCNT/CE composite. More specifically, the dielectric constant and loss tangent at 10 Hz of the PE-MWCNT/CE material with 0.5 wt.% MWCNTs are respectively 168 and 0.006, about 1.4 and 2.5 × 10−5 times the values of the corresponding MWCNT/CE composite. The nature behinds these interesting data was detected from the space charge polarization effect and equivalent circuits. The mechanism for the unique dielectric behavior of the PE-MWCNT/CE materials is that the presence of PE film not only reinforces the space charge polarization, but also subdues the leakage current. On the other hand, based on the discussion on the Cole–Cole plots, an effective method is developed to accurately calculate the relaxation time of space charge polarization in electric conductor/polymer materials.  相似文献   

16.
(Zn0.65Mg0.35)TiO3xCaTiO3-based dielectric ceramics sintered at low temperature thanks to ZnO–B2O3 glass phase addition are investigated. The effects of such additions on the dilatometric curves, the microstructure, the phase composition and the dielectric properties have been carefully examined. It is shown that the sintering temperature is significantly lowered to 930 °C by the addition of 2 wt.% of ZnO–B2O3 glass phase. The temperature coefficient of permittivity (τ?) could be controlled by varying the CaTiO3 content and lead to near zero τ? value. As an optimal composition, (Zn0.65Mg0.35)TiO3 + 7%CaTiO3, co-sinterable with silver electrodes at 930 °C, exhibits at 1 MHz, a relative permittivity of ?r = 21, a temperature coefficient of the permittivity τ? of ?4 ppm/°C and low dielectric losses (tan(δ) < 10?3). These interesting properties make this system promising to manufacture Ag-based electrodes multilayer dielectric devices.  相似文献   

17.
A method of measuring the relative complex permittivity (ɛr = ɛ  ″, tan δ = ɛ″/ɛ′) for low-loss dielectric materials at millimeter wave frequencies has been developed, using a dielectric rod resonator excited by the nonradiative dielectric waveguide (NRD-guide). Relative permittivity (ɛ′) and loss factor (tan δ) of the rod specimen are determined by the resonant frequency (f0) and unloaded Q-factor (Qu) of a TE0m1 mode resonator. The effective conductivity (σ) of conducting plates for short-circuiting the rod resonator is determined using TE021 and TE02δ mode sapphire resonators. Temperature dependence of ɛ′ and tan δ of sapphire and cordierite ceramics were evaluated at 60 GHz. This method has been adopted as the Japanese Industrial Standard (JIS R 1660-3) and is being prepared for the IEC international standard. Several standardized specifications are presented.  相似文献   

18.
(100-x) wt.% BaTi0.85Sn0.15O3–x wt.% MgO (BTS/MgO) composite ceramics were prepared by spark plasma sintering (SPS) technology. Phase constitution, microstructure, dielectric and electrical energy storage properties of BTS/MgO composite ceramics were investigated. The samples prepared by SPS had smaller grain size and presented layer-plate substructure. Dielectric permittivity and dielectric loss of BTS/MgO composite ceramics decreased significantly with the content of MgO increasing, and dielectric tunability maintained a relatively high value (>45%). Meanwhile, the dielectric breakdown strength was improved when addition of MgO in BTS matrix, which resulted in a significant improvement of energy storage density. The high dielectric breakdown strength of 190 kV/cm, energy storage density of 0.5107 J/cm3 and energy storage efficiency of 92.11% were obtained in 90 wt.% BaTi0.85Sn0.15O3–10 wt.% MgO composite ceramics. Therefore, BTS/MgO composites with good tunable dielectric properties and electrical energy storage properties could be exploited for energy storage and phase shifter device applications.  相似文献   

19.
Terahertz (THz) transmissivity and infrared (IR) reflectivity spectra of orthorhombic microwave (MW) ceramics Bi(Nb1−xVx)O4 (0.002 < x < 0.032) were measured between 4 and 3000 cm−1 (0.09–90 THz) at room temperature. A well underdamped mode, presumably the ferroelectric soft mode, was observed at 25 cm−1. Complex permittivity spectra obtained from the fits to our data were extrapolated down to the MW range and compared with the dielectric data near 5 GHz. The linear extrapolation of dielectric losses from THz down to the MW range is in agreement with the experimental MW losses. Addition of 3.2% of vanadium reduces the sintering temperature to 850 °C and the dielectric properties (ɛ = 42.2, Q·f = 14,000 GHz, τf = +10 ppm/°C) remain at a level satisfactory for MW applications. Somewhat lower MW losses were observed in a sample sintered in the N2 atmosphere.  相似文献   

20.
Dielectric properties of Pb(Fe2/3W1/3)O3 ceramic doped with 0.05–1 mol% of MnO2 or Co3O4 were investigated in a wide temperature range from −160 to 450 °C at frequencies 10 Hz–1 MHz. Besides the maxima corresponding to the ferroelectric–paraelectric transition, at higher temperatures other peaks in temperature dependencies of relative electrical permittivity and dissipation factor were observed, attributed to dielectric relaxation. The location and height of these peaks are strongly related to frequency and the dopant level. Both MnO2 and Co3O4 addition caused a significant increase in the resistivity of PFW ceramic—from 106 Ω cm for undoped samples to 1011 Ω cm for those with 1 mol% of a dopant. The activation energies of relaxation calculated on the basis of dielectric measurements are very close to the conduction activation energies determined in similar temperature range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号