首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Composite films consisting of polypyrrole (PPy) and graphene oxide (GO) were electrochemically synthesized by electrooxidation of 0.1 M pyrrole in aqueous solution containing appropriate amounts of GO. Simultaneous chronoamperometric growth profiles and frequency changes on a quartz crystal microbalance showed that the anionic GO was incorporated in the growing GO/PPy composite to maintain its electrical neutrality. Subsequently, the GO was reduced electrochemically to form a reduced GO/PPy (RGO/PPy) composite by cyclic voltammetry. Specific capacitances estimated from galvanostatic discharge curves in 1 M H2SO4 at a current density of 1 A g?1 indicated that values for the RGO/PPy composite were larger than those of a pristine PPy film and the GO/PPy composite. In the case of 6 mg mL?1 GO for the preparation of GO/PPy, a high specific capacitance of 424 F g?1 obtained at the electrochemically prepared RGO/PPy composite indicated its potential for use as an electrode material for supercapacitors.  相似文献   

2.
《Ceramics International》2017,43(13):9877-9883
As a pseudocapacitive electrode materials for supercapacitor, Polypyrrole (PPy) exhibit excellent theoretical specific capacitance. However, it suffers from a poor cycling stability due to structural instability during charge-discharge process. In this work, a novel and facile hydrothermal method has been developed for the intercalation composites of PPy/MoS2 with multilayer three-dimensional structure. The report result shows that the as-prepared electrode possess a outstanding electrochemical properties with significantly specific capacitance of 895.6 F g−1 at current density of 1 A g−1, higher energy density (3.774 Wh kg−1) at power density of 252.8 kW kg−1, furthermore, it also achieve remarkable cycling stability (~98% capacitance retention after 10,000 cycles) which is attributed to the synergistic effect of PPy and MoS2. This synthetic strategy integrates performance enables the multilayer PPy/MoS2 composites to be a promising electrode for energy storage applications.  相似文献   

3.
Hollow carbon nanofiber@nitrogen-doped porous carbon (HCNF@NPC) core–shell composite, which was carbonized from HCNF@polyaniline, was prepared as an improved high conductive carbon matrix for encapsulating sulfur as a cathode composite material for lithium–sulfur batteries. The prepared HCNF@NPC-S composite with high sulfur content of 77.5 wt.% showed an obvious core–shell structure with an NPC layer coating on the surface of the HCNFs and sulfur homogeneously distributed in the coating layer. This material exhibited much better electrochemical performance than the HCNF-S composite, delivered initial discharge capacity of 1170 mAh g−1, and maintains 590 mAh g−1 after 200 cycles at the current density of 837.5 mA g−1 (0.5 C). The significantly improved electrochemical performance of the HCNF@NPC-S composite was attributed to the synergetic effect between HCNF cores, which provided electronic conduction pathways and worked as mechanical support, and the NPC shells with relatively high surface area and pore volume, which could trap sulfur/polysulfides and provide Li+ conductive pathways.  相似文献   

4.
《Ceramics International》2016,42(12):13519-13524
We developed a one-pot in situ synthesis procedure to form nanocomposite of reduced graphene oxide (RGO) sheets anchored with 1D δ-MnO2 nanoscrolls for Li-ion batteries. The as-prepared products were characterized by X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). The electrochemical performance of the δ-MnO2 nanoscrolls/RGO composite was measured by galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy. The results show that the δ-MnO2 nanoscrolls/RGO composite displays superior Li-ion battery performance with large reversible capacity and high rate capability. The first discharge and charge capacities are 1520 and 810 mAh g−1, respectively. After 50 cycles, the reversible discharge capacity is still maintained at 528 mAh g−1 at the current density of 100 mAh g−1. The excellent electrochemical performance is attributed to the unique nanostructure of the δ-MnO2 nanoscrolls/RGO composite, the high capacity of MnO2 and superior electrical conductivity of RGO.  相似文献   

5.
Carbon nanotube-encapsulated SnO2 (SnO2@CNT) core–shell composite anode materials are prepared by chemical activation of carbon nanotubes (CNTs) and wet chemical filling. The results of X-ray diffraction and transmission electron microscopy measurements indicate that SnO2 is filled into the interior hollow core of CNTs and exists as small nanoparticles with diameter of about 6 nm. The SnO2@CNT composites exhibit enhanced electrochemical performance at various current densities when used as the anode material for lithium-ion batteries. At 0.2 mA cm?2 (0.1C), the sample containing wt. 65% of SnO2 displays a reversible specific capacity of 829.5 mAh g?1 and maintains 627.8 mAh g?1 after 50 cycles. When the current density is 1.0, 2.0, and 4.0 mA cm?2 (about 0.5, 1.0, and 2.0C), the composite electrode still exhibits capacity retention of 563, 507 and 380 mAh g?1, respectively. The capacity retention of our SnO2@CNT composites is much higher than previously reported values for a SnO2/CNT composite with the same filling yield. The excellent lithium storage and rate capacity performance of SnO2@CNT core–shell composites make it a promising anode material for lithium-ion batteries.  相似文献   

6.
NO decomposition over electrochemical cells that involve a bilayered composite electrode has been investigated. NO was decomposed only after a minimum current density was applied and its conversion increased abruptly with increasing applied current. The compositions of phases and their spatial distribution on the cathode strongly influenced the decomposition activity as a function of the current density since they are directly correlated with the site and number densities of the triple-phase boundary and the electrochemically induced active site, i.e., F-center. The [(La2Sn2O7 + YSZ)/Pt] electrode could convert more than 85% of NO into N2 at 200 mA/cm2 whereas only 27% was decomposed over the platinum electrode although the latter was more electrochemically active at lower current ∼70 mA/cm2. The addition of Pt into the [(La2Sn2O7 + YSZ)/Pt] composite electrode not only expands the densities of the tpb and F-centers but also enhances competitive NO adsorption as indirectly confirmed by impedance spectroscopy, both of which promote NO conversion at the lower current density.  相似文献   

7.
Exfoliated graphite (EG) was found to be a flexible and conductive support of anode materials for lithium ion batteries through the preparation of the composite of pyrolytic carbon-coated nano-sized silicon nanoparticles supported by exfoliated graphite (pC-Si-EG). Electrochemical analyses revealed that pC-Si-EG composite delivered a high capacity of 902.8 mAh g−1 at a current density of 200 mA g−1 and an excellent cycling stability with 98.4% capacity retention after 40 cycles. It was found that the polycrystalline silicon nanoparticles went through some very interesting changes and broke up into smaller Si nanoparticles dispersing onto the surface of EG after charging/discharging cycles. The results demonstrated that EG plays an important role in the superior electrochemical performances of pC-Si-EG anode due to its high porosity, excellent electronic conductivity and good flexibility.  相似文献   

8.
《Ceramics International》2016,42(15):16916-16926
In recent years, multi-component integrated composite cathodes for lithium ion batteries have attracted considerable attention. In this work, novel layered-spinel integrated cathode materials of (1−x)LiNi0.5Mn0.5O2-xLiMn1.9Al0.1O4 were synthesized by a sol-gel method, and their phase structures, morphologies and electrochemical performance were investigated. The crystal structure of the (1−x)LiNi0.5Mn0.5O2-xLiMn1.9Al0.1O4 is changed from layered to spinel structure with increasing x. All the samples exhibit nanoscale grains with the minimum grain size of ~130 nm when x = 0.5. The composite electrode with x = 0.5 exhibits the optimal discharge capacity, presenting a large initial discharge capacity of 236 mAh g−1 at the current density of 20 mA g−1. Good rate capability is also obtained at the composite electrode with x = 0.5 where the electrode displays the relatively high discharge capacity of 64.9 mAh g−1 at the high rate of 5 C. The improved electrochemical performance is related to the introduction of spinel structure into layered structure and small grain size. The spinel structure can stabilize the layered structure, which leads to the improvement in the electrochemical performance of the composites; and the small grain size in the sample with x = 0.5 provides short lithium ion diffusion way and thus enhances the electrochemical performance.  相似文献   

9.
Conductive hydrogel composed of microcrystalline cellulose (MCC) and polypyrrole (PPy) was prepared in ionic liquid; and the resulting hydrogel was characterized with FT-IR, SEM, XRD and TGA. By doping with TsONa, the MCC/PPy composite hydrogels showed relatively high electrical conductivity, up to 7.83 × 103 S/cm, measured using a four-probe method. The swelling kinetics of the composite hydrogels indicated that the swelling process was mainly influenced by the cellulose content; and the equilibrium swelling ratio decreased as the increasing of MCC content in the hydrogels. In addition, the MCC/PPy composite hydrogels exhibited significantly enhanced mechanical property in contrast to MCC hydrogel.  相似文献   

10.
Porous carbon nanofibers (CNFs) derived from graphene oxide (GO) were prepared from the carbonization of electrospun polyacrylonitrile nanofibers with up to 15 wt.% GO at 1200 °C, followed by a low-temperature activation. The activated CNFs with reduced GOs (r-GO) revealed a specific surface area and adsorption capacity of 631 m2/g and 191.2 F/g, respectively, which are significantly higher than those of pure CNFs (16 m2/g and 3.1 F/g). It is believed that rough interfaces between r-GO and CNFs introduce oxygen pathways during activation, help to produce large amounts of all types of pores compared to pure activated CNFs.  相似文献   

11.
A composite of graphene oxide sheets, carbon nanotubes (CNTs), and commercial graphite particles was prepared. The composite’s use as a high-capacity and binder-free anode material for Li-ion batteries was examined. Results showed that this novel composite had a very high reversible Li-storage capacity of 1172.5 mA h g−1 at 0.5C (1C = 372 mA g−1), which is thrice that of commercial graphite anode. The composite also exceeded the theoretical sum of capacities of the three ingredients. More importantly, its reversible capacity below 0.25 V can reach up to 600 mA h g−1. In summary, the graphene oxide/graphite/CNT composite had higher reversible capacity, better cycling performance, and similar rate capability compared with the graphene oxide/graphite composite.  相似文献   

12.
Self-binding noble metal (Pt, Au, and Ag)/graphene composite papers as large as 13 cm in diameter were fabricated using a flow-directed method where in situ reduced graphene served as a “binder”. The papers were characterized by X-ray diffraction, scanning and transmission electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. This approach yielded well dispersed metals with various nanostructures both on and between the graphene layers to form papers with good conductivity and flexiblility. The 300 °C-annealed Ag/graphene papers were evaluated as binder-free anodes for lithium ion batteries, delivering a reversible charge capacity of 689 mAh/g at a current density of 20 mA/g.  相似文献   

13.
《Ceramics International》2017,43(3):3218-3223
In this work, the nanosized porous MnCo2O4 microspheres were synthesized by a hydrothermal method and their electrochemical behaviors were investigated based on a carbon supported composite air electrode for rechargeable sodium-air batteries. Under dry air test condition, the MnCo2O4/C air electrode demonstrated a stable working voltage of around 2.1 V vs. Na+/Na and a high initial discharge capacity of 7709.4 mA h g−1, based on the active material mass, at a current density of 0.1 mA cm−2. By a limit on the depth of discharge, the cell exhibited a specific capacity of 1000 mA h g−1 with a high cycling stability up to 130 cycles. The considerable electrocatalytic activity suggests that the as-proposed MnCo2O4 is a highly efficient catalyst as air electrode for rechargeable sodium-air batteries.  相似文献   

14.
Sm0.2Ce0.8O1.9 (SDC)–embedded Sm0.5Sr0.5CoO3?δ (SSC) composite fibers were successfully fabricated by electrospinning using commercial SDC nanopowders and an SSC precursor gel containing polyvinyl alcohol (PVA) and hydrated metal nitrate. After calcination of the composite fibers at 800 °C, the fibers of 300 ± 80 nm in diameter with a well-developed SSC cubic-perovskite structure and fluorite SDC were successfully obtained. An anode-supported single cell composed of NiO–Gd0.2Ce0.8O1.9 (GDC)/GDC/SSC–SDC fibers was fabricated, and its electrochemical performance was evaluated. The maximum power densities were 1250 and 360 mW/cm2 at 700 and 550 °C, respectively, which we ascribe to the excellent properties of the SSC fibers with embedded SDC particles such as a highly porous and continuous structure promoting mass transport and a charge transfer reaction.  相似文献   

15.
Three-dimensional (3D) graphene foam materials are highly favored due to large accessible surface and excellent conductive network, which can be commendably applied as self-supporting electrodes for advanced rechargeable lithium batteries (RLBs). Here, promising graphene nanosheets/acid-treated multi-walled carbon nanotubes (GNS/aMWCNT)-supported 1,5-diaminoanthraquinone (DAA) organic foams [oGCTF(DAA)] are prepared by organic solvent displacement method followed by solvothermal reaction. And then electrochemical polymerization is carried out to obtain 3D porous GNS/aMWCNT organic foam-supported poly(1,5-diaminoanthraquinone) (oGCTF@PDAA) nanocomposites, which achieves the ordered growth of homogeneous PDAA nanoparticles on GNS/aMWCNT surface due to the role of oGCTF(DAA). Such structure largely improves PDAA utilization, facilitates charge transportation and suppresses the dissolution of PDAA. As a result, the oGCTF@PDAA cathode for RLBs delivers a high discharge capacity of 289 mAh g−1 at 30 mA g−1 and still retains 122 mAh g−1 at extreme 10 A g−1 for rapid charging/discharging. Moreover, superior cycling stability is achieved with only 14.8% capacity loss after 2000 cycles even at a high current density of 1 A g−1.  相似文献   

16.
《Ceramics International》2017,43(8):6554-6562
In order to improve the electrochemical performance of lithium titanium oxide, Li4Ti5O12 (LTO), for the use in the lithium-ion capacitors (LICs) application, LTO/graphene composites were synthesized through a solid state reaction. The composite exhibited an interwoven structure with LTO particles dispersed into graphene nanosheets network rather than an agglomerated state pristine LTO particles. It was found that there is an optimum percentage of graphene additives for the formation of pure LTO phase during the solid state synthesis of LTO/graphene composite. The effect of graphene nanosheets addition on electrochemical performance of LTO was investigated by a systemic characterization of galvanostatic cycling in lithium and lithium-ion cell configuration. The optimized composite exhibited a decreased polarization upon cycling and delivered a specific capacity of 173 mA h g−1 at 0.1 C and a well maintained capacity of 65 mA h g−1 even at 20 C. The energy density of 14 Wh kg−1 at a power density of 2700 W kg−1 was exhibited by a LIC full cell with a balanced mass ratio of anode to cathode along with a superior capacitance retention of 97% after 3000 cycles at a current density of 0.4 A g−1. This boost in reversible capacity, rate capability and cycling performance was attributed to a synergistic effect of graphene nanosheets, which provided a short lithium ion diffusion path as well as facile electron conduction channels.  相似文献   

17.
《Ceramics International》2016,42(9):10826-10832
ZnO–SnO2 composite nanofibers with different structures were synthesized by a simple electrospinning approach with subsequent calcination at three different temperatures using polyacrylonitrile as the polymer precursor. The electrochemical performance of the composites for use as anode materials in lithium-ion batteries were investigated. It was found that the ZnO–SnO2 composite nanofibers calcined at 700 °C showed excellent lithium storage properties in terms of cycling stability and rate capability, compared to those calcined at 800 and 900 °C, respectively. ZnO–SnO2 composite nanofibers calcined at 700 °C not only delivered high initial discharge and charge capacities of 1450 and 1101 mAh g−1, respectively, with a 75.9% coulombic efficiency, but also maintained a high reversible capacity of 560 mAh g−1 at a current density of 0.1 A g−1 after 100 cycles. Additionally, a high reversible capacity of 591 mAh g−1 was obtained when the current density returned to 0.1 A g−1 after 50 cycling at a high current density of 2 A g−1. The superior electrochemical performance of ZnO–SnO2 composite nanofibers can be attributed to the unique nanofibrous structure, the smaller particle size and smaller fiber diameter as well as the porous structure and synergistic effect between ZnO and SnO2.  相似文献   

18.
An easy electrochemical technique is proposed to prepare electrochemically reduced graphene oxide (ERGO)/polyaniline (PANI) composites in a single step. The technique uses a two-electrode cell in which a separator soaked with an acid solution is sandwiched between graphene oxide (GO)/aniline films deposited on conductive substrates and an alternating voltage was applied to the electrodes. Successful preparations of ERGO/PANI composites were evidenced by characterizations due to UV–vis-NIR, FT-IR, XPS, XRD, and SEM measurements with free-standing films of ERGO/PANI obtained easily by disassembling the two-electrode cells. The ERGO/PANI films exhibited a high mechanical stability, flexibility, and conductivity (68 S cm−1 for the composite film containing 80% ERGO) with nanostructured PANI particles (smaller than 20 nm) embedded homogeneously between the ERGO layers. The two-electrode cells acted as electrochemical capacitors (ECs) after a sufficient voltage cycling and exhibited relatively large specific capacitances (195–243 F g−1 at a scan rate of 100 mV s−1) with an excellent cycle life (retention of 83% capacitance after 20,000 charge–discharge cycles). Influences of the GO/aniline ratio, the sort of electrolytes, and the weight of the composite on the energy storage characteristics of ECs comprising the ERGO/PANI composites were also studied.  相似文献   

19.
Core–shell-structured tin oxide–carbon composite powders with mixed SnO2 and SnO tetragonal crystals are prepared by one-pot spray pyrolysis from a spray solution with tin oxalate and polyvinylpyrrolidone (PVP). The aggregate, made up of SnOx nanocrystals (several tens of nanometers), is uniformly coated with an amorphous carbon layer. The initial discharge capacities of the bare SnO2 and SnOx–carbon composite powders at a current density of 1 A g−1 are 1473 and 1667 mA h g−1, respectively; their discharge capacities after 500 cycles are 78 and 1033 mA h g−1, respectively. The SnOx–carbon composite powders maintain their spherical morphology even after 500 cycles. On the other hand, the bare SnO2 powder breaks into several pieces after cycling. The structural stability of the SnOx–carbon composite powders results in a low charge transfer resistance and high lithium ion diffusion rate even after 500 cycles at a high current density of 2 A g−1. Therefore, the SnOx–carbon composite powders have superior electrochemical properties compared with those of the bare SnO2 powders with a fine size.  相似文献   

20.
A simple fabrication method for a polypyrrole (PPy)/silica nanocomposite with a cratered surface using templated synthesis is described. This nanocomposite was prepared by a modified silica-templated oxidation/polymerization of pyrrole in the presence of FeCl3 oxidant and was characterized by various methods, including Fourier-transform infrared spectroscopy; BET specific surface area; and transmission electron microscopy (TEM). The PPy/silica nanocomposite with surface craters looked like a golf ball in TEM images. The highest BET surface area of PPy/silica nanocomposite with craters was 306 m2/g at 4 mL silica sol solution (Ludox SM-30) loading through the fabrication process, whereas a PPy/silica nanocomposite without craters had a specific surface area of only 85 m2/g with no Ludox SM-30 introduced. In addition, the material's adsorption capacity for heavy metal ions (Hg2+, Ag+, and Pb2+) and its recycling mechanism were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号