首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have performed electron energy-loss spectroscopy (EELS) studies of Ni(1 1 1), graphene/Ni(1 1 1), and the graphene/Au/Ni(1 1 1) intercalation-like system at different primary electron energies. A reduced parabolic dispersion of the π plasmon excitation for the graphene/Ni(1 1 1) system is observed compared to that for bulk pristine and intercalated graphite and to linear for free graphene, reflecting the strong changes in the electronic structure of graphene on Ni(1 1 1) relative to free-standing graphene. We have also found that intercalation of gold underneath a graphene layer on Ni(1 1 1) leads to the disappearance of the EELS spectral features which are characteristic of the graphene/Ni(1 1 1) interface. At the same time the shift of the π plasmon to the lower loss-energies is observed, indicating the transition of initial system of strongly bonded graphene on Ni(1 1 1) to a quasi free-standing-like graphene state.  相似文献   

2.
On the SiC(0 0 0 1) surface (the silicon face of SiC), epitaxial graphene is obtained by sublimation of Si from the substrate. The graphene film is separated from the bulk by a carbon-rich interface layer (hereafter called the buffer layer) which in part covalently binds to the substrate. Its structural and electronic properties are currently under debate. In the present work we report scanning tunneling microscopy (STM) studies of the buffer layer and of quasi-free-standing monolayer graphene (QFMLG) that is obtained by decoupling the buffer layer from the SiC(0 0 0 1) substrate by means of hydrogen intercalation. Atomic resolution STM images of the buffer layer reveal that, within the periodic structural corrugation of this interfacial layer, the arrangement of atoms is topologically identical to that of graphene. After hydrogen intercalation, we show that the resulting QFMLG is relieved from the periodic corrugation and presents no detectable defect sites.  相似文献   

3.
We report on the conversion of epitaxial monolayer graphene on SiC(0 0 0 1) into decoupled bilayer graphene by performing an annealing step in air. We prove by Raman scattering and photoemission experiments that it has structural and electronic properties that characterize its quasi-free-standing nature. The (6√3 × 6√3)R30° buffer layer underneath the monolayer graphene loses its covalent bonding to the substrate and is converted into a graphene layer due to the oxidation of the SiC surface. The oxygen reacts with the SiC surface without inducing defects in the topmost carbon layers. The high-quality bilayer graphene obtained after air annealing is p-doped and homogeneous over a large area.  相似文献   

4.
Yttria-stabilized zirconia (YSZ) was epitaxially grown on both Si(0 0 1) and Si(1 1 1) substrates using a RF magnetron sputtering method. While YSZ(0 0 1) was grown on Si(0 0 1) with a cubic on cubic relation, YSZ(1 1 1) film on Si(1 1 1) with six-fold symmetry on surface showed two variants; cubic on cubic (type A) and 180° rotation about surface normal along [1 1 1] (type B). X-ray diffraction method confirmed single domain YSZ with type B structure when samples were prepared with the relatively slow deposition rate and low substrate temperature. Interestingly, in a reverse pairing of substrate and film, Si deposited on YSZ(1 1 1) substrates showed single domain with type A structure.  相似文献   

5.
Optical measurements are used to investigate the crystalline quality and the stress in thin AlN layers; these thin films are grown on cubic silicon carbide layers which are in turn grown on silicon (111) substrates. Different Ge amounts were deposited at the silicon substrate in order to reduce the lattice parameters mismatch between Si and SiC grown layers. The residual stress of the hexagonal AlN layers is derived from the phonon frequency shifts of the E1(TO) phonon mode. The crystalline quality of AlN films is investigated by considering the intensity of E1(TO) mode of the 2H-AlN and its full width of the half maximum (FWHM). Ge deposition at low temperature 325 °C, before the carbonization process leads to an improved crystalline quality and a reduced residual stress in the AlN/SiC/Si heterostructures. The best crystalline quality and the lowest stress value are found in the case where 1ML Ge amount was predeposited. The E1(TO) mode, phonon frequency shifts-down by 3 cm? 1/GPa with respect to an unstrained layer. The obtained values for the phonon deformation are in reasonable agreement with theoretical calculations.  相似文献   

6.
Intercalation of various elements has become a popular technique to decouple the buffer layer of epitaxial graphene on SiC(0 0 0 1) from the substrate. Among many other elements, oxygen can be used to passivate the SiC interface, causing the buffer layer to transform into graphene. Here, we study a gentle oxidation of the interface by annealing buffer layer and monolayer graphene samples in water vapor. X-ray photoelectron spectroscopy demonstrates the decoupling of the buffer layer from the SiC substrate. Raman spectroscopy is utilized to investigate a possible introduction of defects. Angle-resolved photoemission spectroscopy shows that the electronic structure of the water vapor treated samples. Low-energy electron microscopy (LEEM) measurements demonstrate that the decoupling takes place without changes in the surface morphology. The LEEM reflectivity spectra are discussed in terms of two different interpretations.  相似文献   

7.
Formation of epitaxial graphene (EG) on 3C–SiC films heteroepitaxially grown on Si substrates, otherwise known as graphene-on-silicon (GOS) technology, has a high potential in future nanocarbon-based electronics. The EG's quality in GOS however remains mediocre due mostly to the high density of crystal defects in the 3C–SiC/Si films caused by the large (~ 20%) lattice-mismatch between Si and 3C–SiC crystals. Resultant Si out-diffusion along the planar defects during the high-temperature (~ 1525 K) graphitization annealing can also account for the degradation. Here we propose a two-step growth technique that consists of seeding of rotated 3C-SiC(-1-1-1) crystallites on the Si(110) substrate, conducted in the high-temperature-low-pressure regime, followed by a rapid growth of SiC films in the low-temperature-high-pressure regime. We succeeded in forming an almost lattice-relaxed 3C-SiC(-1-1-1) film on Si(110), having a sufficient thickness (~ 200 nm) that we believe is able to suppress the Si out-diffusion during graphitization. A graphitization annealing applied to this epi-film yields an EG, whose domain size is increased by 60% as compared to that of conventional GOS films.  相似文献   

8.
Using a surface segregation technique, single-layer graphene can be grown on a carbon-doped Pd(1 1 1) substrate. The growth was monitored and visualized using Auger electron spectroscopy, X-ray photoelectron spectroscopy, Raman microscopy, atomic force microscopy and scanning tunneling microscopy. Appropriate adjustment of annealing parameters enables controllable growth of single-layer graphene islands and homogeneous, wafer-scale, single-layer graphene. The chemical state of the C 1s peak from X-ray photoelectron spectroscopy indicates there is almost no charge transfer between graphene and the Pd(1 1 1) substrate, suggesting weak graphene–substrate interaction. These findings show surface segregation to be an effective method for synthesizing large-scale graphene for fundamental research as well as potential applications.  相似文献   

9.
Quasi-free-standing monolayer and bilayer graphene is grown on homoepitaxial layers of 4H-SiC. The SiC epilayers themselves are grown on the Si-face of nominally on-axis semi-insulating substrates using a conventional SiC hot-wall chemical vapor deposition reactor. The epilayers were confirmed to consist entirely of the 4H polytype by low temperature photoluminescence. The doping of the SiC epilayers may be modified allowing for graphene to be grown on a conducing substrate. Graphene growth was performed via thermal decomposition of the surface of the SiC epilayers under Si background pressure in order to achieve control on thickness uniformity over large area. Monolayer and bilayer samples were prepared through the conversion of a carbon buffer layer and monolayer graphene respectively using hydrogen intercalation process. Micro-Raman and reflectance mappings confirmed predominantly quasi-free-standing monolayer and bilayer graphene on samples grown under optimized growth conditions. Measurements of the Hall properties of Van der Pauw structures fabricated on these layers show high charge carrier mobility (>2000 cm2/Vs) and low carrier density (<0.9 × 1013 cm−2) in quasi-free-standing bilayer samples relative to monolayer samples. Also, bilayers on homoepitaxial layers are found to be superior in quality compared to bilayers grown directly on SI substrates.  相似文献   

10.
In this paper, we investigate the role of SiC as a diffusion barrier for Si in the formation of graphene on Si(111) via direct deposition of solid-state carbon atoms in ultra-high vacuum. Therefore, various thicknesses of the SiC layer preformed on the Si substrates were produced in order to evaluate its influence on the quality of graphene formation at different substrate temperatures from 900 °C to 1100 °C. At a given temperature of 1100 °C, we found that a thicker SiC layer can suppress silicon-out diffusion from the substrate and improve the structural quality of the graphene layer. The samples were analyzed by low energy electron diffraction, Auger electron spectroscopy, X-ray photoemission spectroscopy, Raman spectroscopy, and scanning tunneling microscopy.  相似文献   

11.
12.
The structure and the acoustic phonon branches of graphene on Ru(0 0 0 1) have been experimentally investigated with helium atom scattering (HAS) and analyzed by means of density functional theory (DFT) including Grimme dispersion forces. In-plane interactions are unaffected by the interaction with the substrate. The energy of 16 meV for the vertical rigid vibration of graphene against the Ru(0 0 0 1) surface layer indicates an interlayer effective force constant about five times larger than in graphite. The Rayleigh mode observed for graphene/Ru(0 0 0 1) is almost identical to the one measured on clean Ru(0 0 0 1). This is accounted for by the strong bonding to the substrate, which also explains the previously reported high reflectivity to He atoms of this system. Finally, we report the observation of an additional acoustic branch, closely corresponding to the one already observed by HAS in graphite, which cannot be ascribed to any phonon mode and suggests a possible plasmonic origin.  相似文献   

13.
This work studied the effect of tough phase Ti3Si(Al)C2 on the mechanical hysteresis behavior of SiC/SiC. Different from continuous fibers reinforced brittle ceramic matrix composites, the mechanical hysteresis behavior of SiC/SiC containing Ti3Si(Al)C2 shows some abnormal phenomena: as peak applied stress increases during cyclic loading-unloading-reloading tests, the thermal residual stress values exhibit highly dispersion and the thermal misfit relief strain shows abnormally slow growth. These abnormal phenomena are caused by the reduction of transvers cracks (perpendicular to loading fibers) and the generation of hoop cracks (parallel to loading fibers). The plastic deformations of Ti3Si(Al)C2 prevents the transverse cracking of modified matrix, while promoting the hoop cracking of SiC matrix prepared by chemical vapor infiltration (CVI-SiC). Hoop cracking occurs within the transition zone containing amorphous SiO2 layer and carbon layer in CVI-SiC matrix. The combination of weak transition zone and strong modified matrix finally leads to the occurrence of hoop cracking.  相似文献   

14.
Magnetotransport measurements on Hall bar devices fabricated on purely monolayer epitaxial graphene on silicon carbide (SiC/G) show a very tight spread in carrier concentration and mobility across wafer-size dimensions. In contrast, SiC/G devices containing bilayer graphene domains display variations in their electronic properties linked to the amount of bilayer content. The spread in properties among devices patterned on the same SiC/G wafer can thus be understood by considering the inhomogeneous number of layers often grown on the surface of epitaxial graphene on SiC.  相似文献   

15.
16.
A MoSi2/Si composite obtained in situ by reaction of silicon and molybdenum at 1450°C in Ar flow is proposed as pressure‐less joining material for C/SiC and SiC/SiC composites. A new “Mo‐wrap” technique was developed to form the joining material and to control silicon infiltration in porous composites. MoSi2/Si composite joining material infiltration inside coated and uncoated C/SiC and SiC/SiC composites, as well as its microstructure and interfacial reactions were studied. Preliminary mechanical strength of joints was tested at room temperature and after aging at service temperatures, resulting in interlaminar failure of the composites in most cases.  相似文献   

17.
An oxidation protective Si–SiC coating with randomly oriented SiC nanowires was prepared on the SiC-coated carbon/carbon (C/C) composites by a two-step technique. First, a porous network of SiC nanowires was produced using chemical vapor deposition. This material was subjected to pack cementation to infiltrate the porous layer with a mixture of Si and SiC. The nanowires in the coating could efficiently suppress the cracking of the coating by various toughening mechanisms including nanowire pullout, nanowire bridging, microcrack deflection and good interaction between nanowire/matrix interface. The results of thermogravimetric analysis and thermal shock showed that the coating had excellent oxidation protection for C/C composites between room temperature and 1500 °C. These results were confirmed by two additional oxidation experiments conducted at temperature of 900 and 1400 °C, which demonstrated that the coating could efficiently protect C/C composites from oxidation at 900 °C for more than 313 h or at 1400 °C for more than 112 h.  相似文献   

18.
The structure stabilities of double perovskite ceramics‐ (1 ? x) Ba(Mg1/2W1/2)O3 + xBa(Y2/3W1/3)O3 (0.01 ≤ x ≤ 0.4) have been studied by X‐ray powder diffraction (XRD), scanning electron microscopy (SEM), and Raman spectrometry in this study. The microwave dielectric properties of the ceramics were studied with a network analyzer at the frequency of about 8–11 GHz. The results showed that all the compounds exhibited face‐centered cubic perovskite structure. Part of Y3+ and W6+ cations occupied 4a‐site and the remaining Y3+ and Mg2+ distributed over 4b‐site, respectively, and kept the B‐site ratio 1:1 ordered. Local ordering of Y3+/Mg2+ on 4b‐site and Y3+/W6+ cations on 4a‐site within the short‐range scale could be observed with increasing Y‐doping content. The decomposition of the double perovskite compound at high temperature was successfully suppressed by doping with Y on B‐site. However, Ba2Y0.667WO6 impurity phase appeared when x > 0.1. The optimized dielectric permittivity increased with the increase in Y doping. The optimized Q × f value was remarkably improved with small amount of Y doping (x ≤ 0.02) and reached a maximum value of about 160 000 GHz at x = 0.02 composition. Further increasing in Y doping led to the decrease in Q × f value. All compositions exhibited negative τf values. The absolute value of τf decreased with increasing Y‐doping content. Excellent combined microwave dielectric properties with εr = 20, Q × = 160 000 GHz, and τf = ?21 ppm/°C could be obtained for x = 0.02 composition.  相似文献   

19.
The spin-resolved electronic structure of graphene on Ni(1 1 1) was investigated using spin-polarized metastable deexcitation spectroscopy (SPMDS). Graphene was grown epitaxially on a Ni(1 1 1) single-crystalline surface using the ultra high vacuum chemical vapor deposition technique with benzene vapor as a precursor. At 50 L (5 × 10−5 Torr s), a single epitaxial layer of graphene was formed, but no further growth was observed at higher exposure. The spin-summed spectrum of graphene/Ni(1 1 1) had a new peak at the Fermi level and three weak features corresponding to the molecular orbitals of graphene. Spin asymmetry analysis of the SPMDS spectra revealed that the spin polarization of the electronic states shown by the new peak was parallel to the majority spin of the Ni substrate. The appearance and spin polarization of the new electronic states are discussed in terms of the hybridization of graphene π orbitals and Ni d orbitals.  相似文献   

20.
We report on the high temperature chemical vapor deposition of ethylene on Ir(1 0 0) and the resulting development of single and multi-layer graphene films. By employing X-ray photoemission electron spectromicroscopy, low energy electron microscopy and related microprobe methods, we investigate nucleation and growth of graphene as a function of the concentration of the chemisorbed carbon lattice gas. Further, we characterize the morphology and crystal structure of graphene as a function of temperature, revealing subtle changes in bonding occurring upon cooling from growth to room temperature. We also identify conditions to grow multi-layer flakes. Their thickness, unambiguously determined through the analysis of the intensity of the Ir 4f and C 1s emission, is correlated to the electron reflectivity at very low kinetic energy. The effective attenuation length of electrons in few-layer graphene is estimated to be 4.4 and 8.4 Å at kinetic energies of 116 and 338 eV, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号