首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
ABSTRACT: Large-area mildly reduced graphene oxide (MR-GO) monolayer films were self-assembled on SiO2/Si surfaces via an amidation reaction strategy. With the MR-GO as templates, MR-GO-Ag nanoparticle (MR-GO-Ag NP) hybrid films were synthesized by immersing the MR-GO monolayer into a silver salt solution with sodium citrate as a reducing agent under UV illumination. SEM image indicated that Ag NPs with small interparticle gap are uniformly distributed on the MR-GO monolayer. Raman spectra demonstrated that the MR-GO monolayer beneath the Ag NPs can effectively quench the fluorescence signal emitted from the Ag films and dye molecules under laser excitation, resulting in a chemical enhancement (CM). The Ag NPs with narrow gap provided numerous hot spots, which are closely related with electromagnetic mechanism (EM), and were believed to remarkably enhance the Raman signal of the molecules. Due to the co-contribution of the CM and EM effects as well as the coordination mechanism between the MR-GO and Ag NPs, the MR-GO-Ag NP hybrid films showed more excellent Raman signal enhancement performance than that of either Ag films or MR-GO monolayer alone. This will further enrich the application of surface-enhanced Raman scattering in molecule detection.  相似文献   

3.
A multifunctional Ag/TiO2/reduced graphene oxide (rGO) ternary nanocomposite was prepared by a one-step photochemical reaction with TiO2 and Ag nanoparticles successively deposited on reduced graphene oxide. The structure, morphology, composition, optical, and photoelectrochemical properties of Ag/TiO2/rGO were investigated in detail. Meanwhile, the ternary nanocomposite possessed much higher adsorption capacity to organic dyes compared with bare TiO2 and binary Ag/TiO2, which would help to its use for surface-enhanced Raman scattering detection and photocatalytic degradation. Due to the charge transfer between rGO and organic dyes and enhanced electromagnetic mechanism of Ag, Ag/TiO2/rGO nanocomposites as surface-enhanced Raman scattering substrates demonstrated dramatically improved sensitivity and good uniformity. The detection limit of rhodamine 6G (R6G) was as low as 10−9 mol/L, and the relative standard deviation values of the intensities remained below 5%. Most importantly, the synergistic coupling effect of three components extended the photoresponse range and accelerated separation of the electron-hole pairs, leading to greatly improved photocatalytic activity under simulated sunlight. The maximum rate constant (k, 0.06243 min−1) of Ag/TiO2/rGO was 50 and four times higher than that of TiO2 and Ag/TiO2, respectively.  相似文献   

4.
A nanocomposite of silver nanoparticles/reduced graphene oxide (Ag/rGO) has been fabricated as a surface-enhanced Raman scattering (SERS) substrate owing to the large surface area and two-dimensional nanosheet structure of rGO. A facile and rapid microwave-assisted green route has been used for the formation of Ag nanoparticles and the reduction of graphene oxide simultaneously with L-arginine as the reducing agent. By increasing the cycle number of microwave irradiation from 1 and 4 to 8, the mean diameters of Ag nanoparticles deposited on the surface of rGO increased from 10.3 ± 4.6 and 21.4 ± 10.5 to 41.1 ± 12.6 nm. The SERS performance of Ag/rGO nanocomposite was examined using the common Raman reporter molecule 4-aminothiophenol (4-ATP). It was found that the Raman intensity of 4-ATP could be significantly enhanced by increasing the size and content of silver nanoparticles deposited on rGO. Although the Raman intensities of D-band and G-band of rGO were also enhanced simultaneously by the deposited Ag nanoparticles which limited the further improvement of SERS detection sensitivity, the detectable concentration of 4-ATP with Ag/rGO nanocomposite as the SERS substrate still could be lowered to be 10−10 M and the enhancement factor could be increased to 1.27 × 1010. Furthermore, it was also achievable to lower the relative standard deviation (RSD) values of the Raman intensities to below 5%. This revealed that the Ag/rGO nanocomposite obtained in this work could be used as a SERS substrate with high sensitivity and homogeneity.  相似文献   

5.
An efficient surface enhanced Raman scattering (SERS) substrate has been developed based on Ag nanoparticle-decorated graphene oxide (GO). The structure of Ag@GO hybrid material was confirmed by X-ray diffraction, transmission and scanning electron microscopy. The as-prepared substrate exhibited the enhancement ability of SERS toward various aromatic dyes, such as Rhodamine 6G, Rhodamine B, and crystal violet. The enhanced Raman signals could be due to the presence of an ultrathin GO shell with 2.8 nm in thickness. In particular, the GO shell could efficient to maintain chemical and optical stability, and improved biocompatibility for this SERS-activity material.  相似文献   

6.
Fluorinated reduced graphene oxide (F-RGO) is prepared by CF4 plasma treatment of RGO. The fluorine (F) doping is confirmed by X-ray photoelectron spectroscopy and its content is directly related to the plasma exposure time. A modest p-doping effect of the fluorination is observed from the electrical measurements. It is found that the F-RGO is an even better substrate for surface enhanced Raman spectroscopy of molecules than RGO. The relative enhancement factor can be tuned by manipulating the F content in the F-RGO. The effect is attributed to the presence of the strong local electric field induced by the local dipoles of F-containing groups on the F-RGO surface. This shows that the formation of well-designed surface dipoles could be a general way to increase the chemical enhancement of molecular Raman spectra.  相似文献   

7.
8.
《Ceramics International》2023,49(10):15145-15153
In surface-enhanced Raman scattering (SERS) applications, the MAX phase is typically acid etched to address deficiencies, while the more accessible alkali corrosion products are neglected. The woolen ball-like K2Ti8O17 (KTO) nanomaterial is synthesized via an efficient hydrothermal surface corrosion reaction between KOH solution and MAX phase Ti2AlN, which exhibits excellent SERS capabilities to the contaminating dyes. The enhancement factors are 2.33 × 105, 1.04 × 105 and 2.22 × 105 with lowest limits of detection of 10−7 M, 10−6 M and 10−7 M for crystal violet, rhodamine 6G and methylene blue, respectively, indicating that KTO is a highly desired candidate of SERS substrate material. Meanwhile, KTO shows excellent SERS performance for chrysoidine in simulated seawater, which proves its practical application value. The excellent SERS performance of KTO is attributed to the charge transfer mechanism, which is made possible by the appropriate energy band structure and the robust adsorption capacity. In conclusion, a novel method for the synthesis of KTO is investigated and its reaction process and enhancement mechanism are exhaustively characterized and described. The woolen ball-like KTO exhibits remarkable SERS properties and potential applications.  相似文献   

9.
The sulfonation of reduced graphene oxide (SRGO) by the aryl diazonium salt of sulfanilic acid was focused to examine the enhancement effect on the mechanical properties of poly styrene‐acrylonitrile (SAN). The SAN was prepared by surfactant‐free emulsion copolymerization using a cationic initiator. By mixing sulfonated RGO (SRGO) into the SAN polymer matrix, positively‐charged SAN particles were attracted to the negatively‐charged surfaces of SRGO sheets via electrostatic interactions. The storage modulus of SAN‐SRGO increased to 46% at 4 wt% SRGO loading. This improvement is attributed to strong interactions between sulfonated groups on the surface SRGO and the nitrile groups of SAN. POLYM. COMPOS., 44–50, 2016. © 2014 Society of Plastics Engineers  相似文献   

10.
Coherent anti-Stokes Raman scattering (CARS) of carbon nanostructures, namely, highly oriented pyrolytic graphite, graphene nanoplatelets, graphene oxide, and multiwall carbon nanotubes as well CARS spectra of thymine (Thy) molecules adsorbed on graphene oxide were studied. The spectra of the samples were compared with spontaneous Raman scattering (RS) spectra. The CARS spectra of Thy adsorbed on graphene oxide are characterized by shifts of the main bands in comparison with RS. The CARS spectra of the initial nanocarbons are definitely different: for all investigated materials, there is a redistribution of D- and G-mode intensities, significant shift of their frequencies (more than 20 cm-1), and appearance of new modes about 1,400 and 1,500 cm-1. The D band in CARS spectra is less changed than the G band; there is an absence of 2D-mode at 2,600 cm-1 for graphene and appearance of intensive modes of the second order between 2,400 and 3,000 cm-1. Multiphonon processes in graphene under many photon excitations seem to be responsible for the features of the CARS spectra. We found an enhancement of the CARS signal from thymine adsorbed on graphene oxide with maximum enhancement factor about 105. The probable mechanism of CARS enhancement is discussed.  相似文献   

11.
The reduction of graphene oxide (GO) to graphene is typically carried out under very harsh conditions that require strong reducing agents, elevated temperatures, and long reaction times. Here we introduce a new reducing agent, lithium naphthalenide (LN:
), which is distinguished by the very fast (less than 10 min) and highly efficient reduction of graphene oxide, even under ambient conditions. In contrast with conventional reducing agents that yield hydrophobic reduced graphene oxide (r-GO), this new reducing agent produces r-GO with enhanced hydrophilicity and a very stable dispersion in water. As an additional advantage, the dispersibility of the resultant r-GO can be easily controlled by varying the washing conditions. This new reducing agent, LN, opens up a practical and economical route to the production of hydrophilic r-GO and broadens the applications of graphene-based materials.  相似文献   

12.
In this work, we fabricated reduced large-area graphene oxide (rLGO) with maximum surface area of 1592 μm2 through a cost-effective chemical reduction process at low temperature. The product revealed large electrical conductivity of 243 ± 12 S cm−1 and thermal conductivity of 1390 ± 65 W m−1 K−1, values much superior to those of a conventional reduced small-area graphene oxide (with electrical conductivity of 152 ± 7.5 S cm−1 and thermal conductivity of 900 ± 45 W m−1 K−1). The rLGO thin film also exhibited not only excellent stiffness and flexibility with Young’s modulus of 6.3 GPa and tensile strength of 77.7 MPa, but also an efficient electromagnetic interference (EMI) shielding effectiveness of ∼20 dB at 1 GHz. The excellent performance of rLGO is attributed to the fact that the larger area LGO sheets include much fewer defects that are mostly caused by the damage of graphene sp2 structure around edge boundaries, resulting in large electrical conductivity. The manufacturing process of rLGO is an economical and facile approach for the large scale production of highly thermally conducting graphene thin films with efficient EMI shielding properties, greatly desirable for future portable electronic devices.  相似文献   

13.
We report an efficient one-step approach to reduce and functionalize graphene oxide (GO) during the in situ polymerization of phenol and formaldehyde. The hydrophilic and electrically insulating GO is converted to hydrophobic and electrically conductive graphene with phenol as the main reducing agent. Simultaneously, functionalization of GO is realized by the nucleophilic substitution reaction of the epoxide groups of GO with the hydroxyl groups of phenol in an alkali condition. Different from the insulating GO and phenol formaldehyde resin (PF) components, PF composites are electrically conductive due to the incidental reduction of GO during the in situ polymerization. The electrical conductivity of PF composite with 0.85 vol.% of GO is 0.20 S/m, nearly nine orders of magnitude higher than that of neat PF. Moreover, the efficient reduction and functionalization of GO endows the PF composites with high thermal stability and flexural properties. A striking increase in decomposition temperature is achieved with 2.3 vol.% of GO. The flexural strength and modulus of the PF composite with 1.7 vol.% GO are increased by 316.8% and 56.7%, respectively.  相似文献   

14.
Solutions of hydrogen-capped polyynes were prepared by laser ablation of graphite powder in n-hexane and subjected to size separation by high-performance liquid chromatography. Solutions of size-selected polyynes CnH2 (n = 8–16) were investigated by normal Raman (NR) and surface-enhanced Raman scattering (SERS) spectroscopy. A main band appearing in the 2000–2200 cm−1 region of the NR spectra showed a systematic downward shift as the chain length increased. The observed NR bands were assigned to Raman-active CC stretching vibrational modes by comparison with calculations based on density functional theory. Raman bands observed in SERS spectra were very broad and located at frequencies lower than the NR bands. A systematic band shift with increasing chain length was also observed for one of the bands. This band was thus assigned to a counterpart of the strong band in the NR spectra. These results made it possible to assign the origins of previously reported SERS bands of mixed polyyne solutions.  相似文献   

15.
氧化石墨烯的功能化及其生物相容性研究   总被引:1,自引:0,他引:1  
孙彤  崔欣  侯雨  张琳  杨梅 《应用化工》2013,(5):806-808
利用改进Hummers法合成纳米级氧化石墨烯(GO),并将羧基和氨基化聚乙二醇(PEG-NH2)共价交联到GO表面,形成功能化的氧化石墨烯(PGO)。考察PGO在水、PBS和生理溶液中的稳定性,并以肝脏细胞为研究对象,结合MTT细胞毒性检测,评价PGO的生物相容性。结果表明,PGO在生理溶液中最稳定,且对肝脏细胞的毒性小,具有良好的生物相容性。  相似文献   

16.
A simple and facile method for multiscale, in-plane patterning of graphene oxide and reduced graphene oxide (GO–rGO) was developed by region-specific reduction of graphene oxide (GO) under a mild irradiation. The UV-induced reduction of graphene oxide was monitored by various spectroscopic techniques, including optical absorption, X-ray photoelectron spectroscopy (XPS), Raman, and X-ray diffraction (XRD), while the resultant GO–rGO patterned film morphology was studied on optical microscope, scanning electron microscope (SEM), and atomic force microscope (AFM). Flexible symmetric and in-plane supercapacitors were fabricated from the GO–rGO patterned polyethylene terephthalate (PET) electrodes to show capacitances up to 141.2 F/g.  相似文献   

17.
Wang Z  Zhan X  Wang Y  Muhammad S  Huang Y  He J 《Nanoscale》2012,4(8):2678-2684
A low-cost, compatible with flexible electronics, high performance UV sensor has been achieved from a reduced graphene oxide (RGO) decorated hydrangea-like ZnO film on a PDMS substrate. The hydrangea-like ZnO UV sensor has the best UV sensing performance among devices made of three kinds of ZnO nanostructures synthesized by a hydrothermal method, and demonstrated a dramatic enhancement in on/off ratio and photoresponse current by introducing an appropriate weight ratio of RGO. The on/off ratio of the 0.05% RGO/ZnO sensor increases almost one order of magnitude compared to that of a pristine hydrangea-like ZnO UV sensor. While for the 5% RGO decorated ZnO sensor, the photoresponse current reaches as high as ~1 μA and exceeds 700 times that of a ZnO UV sensor. These results indicate that RGO is an appropriate material to enhance the performance of ZnO nanostructure UV sensors based on its unique features, especially the high optical transparency and excellent electronic conductivity. Our findings will make RGO/ZnO nanohybrids extraordinarily promising in optoelectronics, flexible electronics and sensor applications.  相似文献   

18.
This study deals with the utility of mini spray dryer process to improve the dispersibility, of graphene oxide(GO) and its application for high-performance supercapacitor. Initially, the neutral solution of GO was obtained using the modified Hummer's method. After this, the prepared GO solution was processed by mini spray dryer to obtain a more purified, lighter, and dispersed form of GO which is named as spray dryer processed GO (SPGO). The SPGO thus obtained showed excellent dispersibility behavior with various solvents, which is not found in case of conventional oven drying. Furthermore, utility of SPGO and its reduced form (r-SPGO) for supercapacitor applications have been investigated. Results obtained from the cyclic voltammetry(CV) analysis, impedance, and charge-discharge behavior of supercapacitor fabricated using r-SPGO shows enhanced features. Therefore, the simple spray dried GO and its reduced form, that is, r-SPGO can be utilized as a potential candidate for the supercapacitor application. Herein, as synthesized SPGO exhibited the specific capacitance of 12.07 and 37.6 F/g with PVA-H3PO4 and 1 mol/L H3PO4, respectively, at a scan rate of 5 mV/s. On the other hand, reduced form of SPGO, that is, r-SPGO showed the specific capacitance of 27.16 and 230 F/g with PVA-H3PO4 and 1 mol/L H3PO4, respectively.  相似文献   

19.
20.
N-doped graphene (NG) has been prepared by annealing reduced graphene oxide (RGO) in ammonia. The magnetic properties of RGO and NG have been studied. The results showed that doping RGO with N at a relatively low temperature (⩽600 °C) can increase its magnetization, and which can be increased by 64.1% at the annealing temperature of 500 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号