首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyviologen (PV)–reduced graphene oxide (rGO) nanocomposite films were fabricated by simple, one-step reductive electropolymerization of cyanopyridinium based precursor monomer (CNP) in an aqueous dispersion of graphene oxide (GO). Since the polymer formation and reduction of graphene oxide occurs within the same potential window, electrocodeposition method was preferred for obtaining nanostructured PV–rGO films. Cyclic voltammetry experiments of PV–rGO displayed two well resolved, reversible one-electron redox processes typical of viologen. Being a redox polymer, incorporation of rGO further enhances the electroactivity of the PV in the composite films. Vibrational spectral analysis with surface characterization revealed structural changes after composite formation along with subsequent reduction of GO within the polymer matrix. The PV–rGO nanostructured film exhibits a high-contrast electrochromism with low driving voltage induced striking color changes from transparent (0 V) to purple (−0.6 V), high coloration efficiency, fast response times and better cycling stability compared to a pristine PV film. This improved performance can be attributed to the high stability of the electrochrome in the composite assembly induced by electrostatically driven non-covalent interactions between redox PV2+ and negatively charged rGO, improved electrical conductivity and enlarged surface area accessed through reinforced nanostructured graphene sheets for tethering PV molecules.  相似文献   

2.
In this work, a simple electrochemical reduction procedure has been applied to nanostructured composite films of polyaniline (PANI) and graphene oxide (GO) having a globular surface morphology with the grain size of 50 nm. The reduction converts GO to reduced GO (rGO) which improves the electroactivity of the PANI composite films with 30%. Cyclic voltammetry confirmed the reduction of GO to rGO whereas electrochemical impedance spectroscopy showed that the rGO network increases the redox capacitance of the composite films with 15% to 77 mF cm−2. In a three-electrode cell, the anodic charge of the PANI film containing GO increased with 18.7% during the potential cycling stability test for 10,000 cycles between −0.2 and 0.5 V, indicating that the film had a good stability against degradation. This composite film type still maintained a high capacitance of 15 mF cm−2 in a symmetric two-electrode cell after 10,000 potential cycles between 0 and 0.4 V. The electrochemically prepared PANI composite films reported here are aimed to be used in capacitor applications where it is crucial to deposit thin PANI layers on well-defined small surfaces where other polymerization or deposition techniques cannot be used and in solid-state chemical sensors as ion-to-electron transducer interfaces.  相似文献   

3.
《Ceramics International》2015,41(4):5798-5806
This work explored the synthesis of rGO sheets from graphene oxide (GO) using hydrazine solvent as reducing agent through chemical reduction. Meanwhile, GO films with a 2D structure were prepared from graphite flakes (starting material with an average flake size of 150 nm) by an Improved Hummer׳s method. Results showed that the chemical oxidation of graphite flakes carried out at room temperature could be used to prepare GO sheets in the initial stage. The conversion of GO into large-area rGO sheets with ~85% of carbon content could then be achieved by chemical reduction. RGO sheets with a lateral dimension of up to ~45 nm were obtained, which indicated the formation of an extremely thin layer of rGO sheets. A high degree of GO reduction was also realized using a high stirring speed (1200 rpm) for 72 h in a mixture of acids and potassium permanganate, resulting in a high carbon content of rGO with a large lateral dimension and area. Overall, our Improved Hummer׳s method with a high stirring speed (1200 rpm) for 72 h provided an easy approach to the preparation of large-area and ultrathin rGO sheets.  相似文献   

4.
By alternating deposition of graphene oxide (GO) sheets and silver nitrate by means of an electrostatic self-assembly method, a GO–Ag+ film was prepared. After thermal annealing, a graphene–silver nanoparticle (GE–Ag) multilayer film, with high transparency and electrically conductivity, was obtained. The transmittance of a film with four assembly cycles was 86.3%, at a wavelength of 550 nm, better than that of a pure GE film (73.8%). While the surface resistance was 97  ?1, much lower than that of a pure GE film (430  ?1). The Ag nanoparticles play a crucial role in improving the properties of the GE–Ag film, acting as conductive paths and light-trapping nanoparticles, which not only reduces the reflection of the film, but also prevents the GE sheets from aggregation and provides conductive paths between sheets, improving the electrical conductivity.  相似文献   

5.
Chemically-derived ultralarge graphene oxide (UL-GO) sheets are synthesized from natural graphite (NG) flakes based on the modified Hummers method. Three different approaches are adopted and the effects of ultrasonication, thermal shock expansion, degree of oxidation and precursor NG flake size are specifically studied on the quality and size of GO sheets produced. Results show that the use of large-size NG flakes as precursors does not necessarily produce large GO sheets. Optimal processing conditions are identified to be thermal shock exfoliation with the addition of moderate oxidation, i.e. with an expanded graphite to KMnO4 weight ratio = 1:7 for 24 h, and avoiding ultrasonication during the oxidation process. The resulting UL-GO sheets have a maximum area over 10,000 μm2 with a mean area 3400 μm2 at a yield of 39.8% for GO sheets larger than 2500 μm2, which are considered quite sufficient as precursors for many multifunctional applications, including transparent conductive films, optoelectronic devices and aligned graphene composites.  相似文献   

6.
We report a simple but highly-effective hydrohalic acid reducing method to reduce graphene oxide (GO) films into highly conductive graphene films without destroying their integrity and flexibility at low temperature based on the nucleophilic substitution reaction. GO films reduced for 1 h at 100 °C in 55% hydroiodic (HI) acid have an electrical conductivity as high as 298 S/cm and a C/O ratio above 12, both of which are much higher than films reduced by other chemical methods. The reduction maintains good integrity and flexibility, and even improves the strength and ductility, of the original GO films. Based on this reducing method, a flexible graphene-based transparent conductive film with a sheet resistance of 1.6 kΩ/sq and 85% transparency was obtained, further verifying the advantage of HI acid reduction.  相似文献   

7.
《Ceramics International》2017,43(16):13185-13192
WO3 is one of the inspiring sensing materials that show high response to O3; an efficient fabrication of WO3 film with incorporation of complementary additives is essential for enhanced sensitivity. Here we report film deposition by liquid flame spraying, characterization of nanostructured WO3-reduced graphene oxide (rGO) composites and their gas-sensing activities to O3. The starting feedstock was prepared from WCl6 and rGO for pyrolysis synthesis by flame spraying. Nano-porous WO3-rGO films were successfully fabricated and characterized by transmission electron microscopy, field emission scanning electron microscopy, Raman spectrometry, thermal analyses and X-ray diffraction. Nanosized WO3 grains exhibited oriented nucleation on rGO flakes whereas rGO retained intact its nano-structural features after spraying. Constrained grain growth of WO3 of 60–70 nm in size was realized in the rGO-containing films with as compared to ~220 nm in the pure WO3 film. The WO3-rGO film sensors showed quicker response to O3 and faster recovery than rGO-free WO3 film sensors. Addition of rGO in 1.0 wt% or 3.0 wt% in the films caused a significantly reduced effective working temperature of the film sensors from ~ 250 °C to ~ 150 °C.  相似文献   

8.
Although supercapacitors have higher power density than batteries, they are still limited by low energy density and low capacity retention. Here we report a high-performance supercapacitor electrode of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper (MnO2–rGO/CFP). MnO2–rGO nanocomposite was produced using a colloidal mixing of rGO nanosheets and 1.8 ± 0.2 nm MnO2 nanoparticles. MnO2–rGO nanocomposite was coated on CFP using a spray-coating technique. MnO2–rGO/CFP exhibited ultrahigh specific capacitance and stability. The specific capacitance of MnO2–rGO/CFP determined by a galvanostatic charge–discharge method at 0.1 A g−1 is about 393 F g−1, which is 1.6-, 2.2-, 2.5-, and 7.4-fold higher than those of MnO2–GO/CFP, MnO2/CFP, rGO/CFP, and GO/CFP, respectively. The capacity retention of MnO2–rGO/CFP is over 98.5% of the original capacitance after 2000 cycles. This electrode has comparatively 6%, 11%, 13%, and 18% higher stability than MnO2–GO/CFP, MnO2/CFP, rGO/CFP, and GO/CFP, respectively. It is believed that the ultrahigh performance of MnO2–rGO/CFP is possibly due to high conductivity of rGO, high active surface area of tiny MnO2, and high porosity between each MnO2–rGO nanosheet coated on porous CFP. An as-fabricated all-solid-state prototype MnO2–rGO/CFP supercapacitor (2 × 14 cm) can spin up a 3 V motor for about 6 min.  相似文献   

9.
AlI3 synthesized by I2 and Al in ethanol was used as reductive agent to directly obtain flexible reductive graphene oxide (RGO) films with high conductivity of 5320 S/m from graphene oxide (GO) films at a low temperature of 80 °C. This reductive method has provided a low-cost and effective route for large-scale production of graphene with high catalytic activity. Structural evolution during the reduction of GO was studied by Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. The RGO films served as counter electrode exhibited high electrochemical activity.  相似文献   

10.
The thermal conductive polyamide-6/graphene (PG) composite is synthesized by in situ ring-opening polymerization reaction using ε-caprolactam as the monomer, 6-aminocaproic acid as the initiator and reduced graphene oxide (RGO) as the thermal conductive filler. The generated polyamide-6 (PA6) chains are covalently grafted onto graphene oxide (GO) sheets through the “grafting to” strategy with the simultaneous thermal reduction reaction from GO to RGO. The homogeneous dispersion of RGO sheets in PG composite favors the formation of the consecutive thermal conductive paths or networks at a relatively low GO sheets loading, which improves the thermal conductivity (λ) from 0.196 W m−1 K−1 of neat PA6 to 0.416 W m−1 K−1 of PG composite with only 10 wt% GO sheets loading.  相似文献   

11.
Oligothiophene (nTP, n = 1, 2, 3) has been used as the reductant for the first time in the preparation of graphene by the reduction of graphene oxide (GO). A simple single-step chemical approach has been developed to reduce and/or functionalize GO with nTP. The reaction takes place at room temperature under stirring of a suspension of GO and nTP in MeCN. The nTP has been grafted onto the surface of GO by reacting epoxy groups together with the reduced graphene oxide (rGO). It was observed that increasing the thiophene ring (hereafter, thiophene is referred to as TP; 2,2′ bithiophene as 2TP; and 2,2′:5′,2″ terthiophene as 3TP) can enhance the reduction reaction. All instrumental experiments have confirmed that nTP not only covalently bonded to the GO but also partly restored the conjugate structure of GO, as a reducing agent. The resultant rGO with 3TP (rGO3TP) has been demonstrated to show remarkable electrocatalytic activity toward oxygen reduction reaction (ORR) compared to typical rGO. The observed ORR electrocatalytic activity induced by the intermolecular charge-transfer provides a general approach to various carbon-based metal-free ORR catalysts.  相似文献   

12.
《Ceramics International》2017,43(6):4895-4903
Zinc oxide (ZnO) and Graphene Oxide (GO) are known to show good electrochemical properties. In this paper, rGO/ZnO nanocomposites have been synthesised using a simple microwave assisted method. The nanocomposites are characterized using XRD, Raman, SEM and TEM. XRD reveals the wurtzite structure of ZnO and TEM shows the heterogeneous nucleation of ZnO nanocrystals anchored onto graphene sheets. The electrochemical properties of the rGO/ZnO nanocomposite enhanced significantly for applications in glucose sensors and supercapacitors. The non-enzymatic glucose sensor of this nanocomposite tested using cyclic voltammetry (CV) and chronoamperometry, exhibits high sensitivity (39.78 mA cm−2 mM−1) and a lower detection limit of 0.2 nM. The supercapacitor electrode of rGO/ZnO nanocomposite exhibits a significant increase in specific capacitance.  相似文献   

13.
Silver-nanoparticles-decorated reduced graphene oxide (rGO) was electrodeposited on indium tin oxide (ITO) by a cyclic voltammetry method. The results of X-ray diffraction, Fourier-transform infrared transmission spectroscopy and Raman spectroscopy confirmed the simultaneous formation of cubic phase silver nanoparticles and reduction of GO through the electrodeposition process. Field emission scanning electron microscope images showed a uniform distribution of nanometer-sized silver nanoparticles with a narrow size distribution on the RGO sheets, which could only be achieved using silver ammonia complex instead of silver nitrate as precursor. The composite deposited on ITO exhibited notable electrocatalytic activity for the reduction of H2O2, leading to an enzymeless electrochemical sensor with a fast amperometric response time less than 2 s. The corresponding calibration curve of the current response showed a linear detection range of 0.1–100 mM (R2 = 0.9992) while the limit of detection was estimated to be 5 μM.  相似文献   

14.
Peng Su  Hui-Lin Guo  Lei Tian  Sheng-Ke Ning 《Carbon》2012,50(15):5351-5358
A highly stable graphene suspension has been prepared using dimethyl ketoxime (DMKO) as reductant. Nitrogen was doped into the graphene plane at the same time as the graphene oxide (GO) sheets were reduced. X-ray photoelectron spectroscopy indicated that the C/O ratio of graphene was significantly increased after GO was treated with DMKO and the quantity of nitrogen incorporated into the graphene lattice was 3.67 at.%. The electrical conductivity of the graphene paper was found to be ~102 S m?1, which was 5 orders of magnitude better than that of GO, and this demonstrated the effective chemical reduction of GO. The mechanism of the chemical reaction of GO with DMKO was also discussed. The as-produced graphene material showed good capacitive behavior and long cycle life with a specific capacitance of ~140 F g?1.  相似文献   

15.
《Ceramics International》2016,42(16):18181-18188
Homogeneously dispersed reduced-graphene-oxide (rGO) reinforced geopolymer composites were successfully prepared through in-situ reduction of graphene oxide (GO) under alkaline geopolymeric condition. The effects of treatment temperatures on the reduction of GO under the alkaline solution during the rGO/geopolymer preparation process were characterized systematically. The results showed that GO could be in situ reduced under alkaline geopolymer solution at various temperatures (25–80 °C) for 3 h. The reduction degree of rGO was improved with increasing the reaction temperature. The rGO was well dispersed, and the rGO/geopolymer composites showed amorphous structure.  相似文献   

16.
《Ceramics International》2017,43(15):11556-11562
The ternary composite, carbon coated hollow ZnSnO3 (ZS@C) cubes encapsulated in reduced graphene oxide sheets (ZS@C/rGO), was synthesized via low-temperature coprecipitation and colloid electrostatic self-assembly. The uniform carbon-coating layer not only plays a role in buffering the volume change of ZnSnO3 cubes in the charging/discharging processes, but also forms three-dimensional network with the cooperation of graphene to maintain the structural integrity and improve the electrical conductivity. The results show that the reduced graphene oxide sheets encapsulated ZS@C microcubes with a typical core-shell structure of ~700 nm in size exhibit an improved electrochemical performance compared with bare ZS@C microcubes. The ZS@C/rGO electrode delivered an initial discharge capacity of 1984 mA h g−1 at a current density of 0.1 A g−1 and maintained a capacity of 1040 mA h g−1 after 45 cycles. High specific capacity and superior cycle stability indicate that the ZS@C/rGO composite has a great potential for the application of lithium-ion anode material.  相似文献   

17.
A simple and facile method for multiscale, in-plane patterning of graphene oxide and reduced graphene oxide (GO–rGO) was developed by region-specific reduction of graphene oxide (GO) under a mild irradiation. The UV-induced reduction of graphene oxide was monitored by various spectroscopic techniques, including optical absorption, X-ray photoelectron spectroscopy (XPS), Raman, and X-ray diffraction (XRD), while the resultant GO–rGO patterned film morphology was studied on optical microscope, scanning electron microscope (SEM), and atomic force microscope (AFM). Flexible symmetric and in-plane supercapacitors were fabricated from the GO–rGO patterned polyethylene terephthalate (PET) electrodes to show capacitances up to 141.2 F/g.  相似文献   

18.
Herein, we developed a strategy for fabrication of iron oxide infiltrated vertically aligned multiwalled carbon nanotubes (MWCNT forest) sandwiched with reduced graphene oxide (rGO) sheets network for high performance electromagnetic interference (EMI) shielding application which offers a new avenue in this area. Such engineered sandwiched network exhibits enhanced shielding effectiveness compared to conventional EMI shielding materials. This network of exotic carbons demonstrates the shielding effectiveness value more than 37 dB (>99.98% attenuation) in Ku-band (12.4–18 GHz), which is greater than the recommended limit (∼30 dB) for techno-commercial applications.  相似文献   

19.
Low cost resistive switching memory devices using graphene oxide–iron oxide (GF) hybrid thin films, sandwiched between platinum (Pt) and indium-tin-oxide (ITO) electrodes, were demonstrated. The fabricated devices with Pt/GF/ITO structure exhibited reliable and reproducible bipolar resistive switching performance, with an ON/OFF current ratio of 5 × 103, excellent retention time longer than 105 s, SET voltage of 0.9 V, and good endurance properties. In all aspects of the device characteristics, the GF based devices outperformed graphene oxide (GO) based devices. Ohmic conduction was found to be dominant current conduction mechanism in all switching regions except for the high voltage regime where space charge limited conduction and trap charge limited conduction were found to be the main current conduction mechanism. X-ray photoelectron spectroscopy and transmission electron microscopy/selected area diffraction analysis revealed γ-Fe2O3 and Fe3O4 iron oxide phases coexist in the hybrid films. While the desorption/adsorption of oxygen-related functional groups on the GO sheets is the dominant resistive switching mechanism in Pt/GO/ITO devices, the formation/rupture of multiple highly conducting Fe3O4 filaments at the iron oxide/GO interface additionally facilitate the switching in the present Pt/GF/ITO devices. Thereby, excellent electrical switching performance was achieved.  相似文献   

20.
The paper reports on the preparation of reduced graphene oxide (rGO) modified with nanodiamond particles composites by a simple solution phase and their use as efficient electrode in electrochemical supercapacitors. The technique relies on heating aqueous solutions of graphene oxide (GO) and nanodiamond particles (NDs) at different ratios at 100 °C for 48 h. The morphological properties, chemical composition and electrochemical behavior of the resulting rGO/NDs nanocomposites were investigated using UV/vis spectrometry, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM) and electrochemical means. The electrochemical performance, including the capacitive behavior of the rGO/NDs composites were investigated by cyclic voltammetry and galvanostatic charge/discharge curves at 1 and 2 A g−1 in 1 M H2SO4. The rGO/ND matrix with 10/1 ratio displayed the best performance with a specific capacitance of 186 ± 10 F g−1 and excellent cycling stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号