首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Investigation of fluid flow and heat transfer in rotating microchannels is important for centrifugal microfluidics, which has emerged as an advanced technique in biomedical applications and chemical separations. The centrifugal force and Coriolis force, arising as a consequence of the microchannel rotation, change the flow pattern significantly from the symmetric profile of a non-rotating channel. Successful design of microfluidic devices in centrifugal microfluidics depends on effectively regulating these forces in rotating microchannels. In this work, we have numerically investigated the flow and heat transfer in rotating rectangular microchannel with continuum assumption. A pressure-based finite-volume technique with a staggered grid was applied to solve the steady incompressible Navier–Stokes and energy equations. It was observed that the effect of Coriolis force was determined by the value of the non-dimensional rotational Reynolds number (Re ω ). By comparing the root mean square deviation of the axial velocity profiles with the approximate analytical results of purely centrifugal flow for different aspect ratios (AR = width/height), a critical rotational Reynolds number (Re ω,cr) was computed. Above this value of (Re ω,cr), the effect of secondary flow becomes dominant. For aspect ratios of 0.25, 0.5, 1.0, 2.0, 4.0 and 9.09, this critical rotational Reynolds number (Re ω,cr) was found to be 14.0, 5.5, 3.8, 4.7, 6.5 and 10.0, respectively.  相似文献   

2.
The lattice Boltzmann method (LBM) and traditional finite difference methods have separate strengths when solving the incompressible Navier–Stokes equations. The LBM is an explicit method with a highly local computational nature that uses floating-point operations that involve only local data and thereby enables easy cache optimization and parallelization. However, because the LBM is an explicit method, smaller grid spacing requires smaller numerical time steps during both transient and steady state computations. Traditional implicit finite difference methods can take larger time steps as they are not limited by the CFL condition, but only by the need for time accuracy during transient computations. To take advantage of the strengths of both methods, a multiple solver, multiple grid block approach was implemented and validated for the 2-D Burgers’ equation in Part I of this work. Part II implements the multiple solver, multiple grid block approach for the 2-D backward step flow problem. The coupled LBM–VSM solver is found to be faster by a factor of 2.90 (2.87 and 2.93 for Re = 150 and Re = 500, respectively) on a single processor than the VSM for the 2-D backward step flow problem while maintaining similar accuracy.  相似文献   

3.
The use of two-dimensional (2D) numerical simulations with a reduced particle-based Reynolds number (Re) for studying particle migration in a microchannel with equally spaced multiple constrictions was investigated. 2D and 3D colloidal lattice Boltzmann (LB) models were used to simulate particle-fluid hydrodynamics. Experiments were conducted with inert microparticles in a creeping flow in a microflow channel with symmetric wall obstacles. Lowering Re in 2D simulations by a factor of R (the dimensionless particle radius in LB simulations) resulted in a close match between numerically computed and experimentally obtained particle velocities, indicating that Re-based dimensional scaling was needed to capture the 3D particle flow dynamics in 2D simulations of experimental data. We captured particle displacement motion in a microchannel with symmetric inline obstacles in 2D simulations, where symmetry in the flow field was broken by local disturbances in the flow field due to particle motion, indicating that asymmetry in channel geometry is not the sole cause for particle displacement motion. Particle acceleration/deceleration around each constriction followed the same pattern, but each constriction acted like a particle accelerator in 2D and 3D simulations, in which particles exhibited progressively higher velocities in each subsequent constriction. Particles migrated across multiple streamlines in converging and diverging flow zones in a creeping flow, which calls into question the use of steady streamlines for calculating transient particle flow. Monotonicity in particle acceleration toward the constriction and deceleration beyond the constriction was broken by interparticle hydrodynamic interactions leading to more pronounced particle migration across multiple streamlines.  相似文献   

4.
Experiments, simulations, and numerical bifurcation analysis are used to study the incompressible flow between two opposed tubes with disks mounted at their exits. The experiments in this axisymmetric geometry show that for low and equal Reynolds numbers, Re, at both nozzles, the flow remains symmetric about the plane halfway through the nozzle exits and the stagnation plane is located halfway between the two jets. When Re is increased past a critical value, asymmetric flow fields are obtained even when the momentum fluxes of the two opposed streams are equal. For unequal Re at the jet exits, when the fixed velocity (and the corresponding Reynolds number, Re1) of one stream is low, the stagnation plane location, SPL, changes smoothly with the Re2. For high enough Re1, a hysteretic jump of SPL is observed. Particle Image Velocimetry and flow visualization demonstrate that within the hysteretic range, the two stable flow fields are anti-symmetric. The experimental setup is also studied with transient incompressible flow simulations using a spectral element solver. It is found that to accurately model the flow, we either need to extend the domain into the nozzles, or impose experimental velocity profiles at the nozzle exits. As in the experiments asymmetric flows are obtained past a critical Re. Finally, bifurcation analysis using a Newton-Picard method shows that the transition from symmetric to asymmetric flows results from the loss of stability of the symmetric flows at a pitchfork bifurcation.  相似文献   

5.
A semi-automatic block-structured grid generation technique for hexahedral meshing of porous open cell Kelvin foam structures for investigation of the pore scale fluid flow is presented. The performance of the algorithm is compared with a tetrahedral full automatic Delaunay meshing technique. In the first part of the paper the meshing strategies are explained. In the second part grid generation times, simulation times and the mesh quality are evaluated. For this Computational Fluid Dynamics (CFD) simulations for both a diffusion-dominated case (Re = 0.129) and a convection-dominated case (Re = 129) are carried out and analysed on four different cell resolutions of each mesh type. For the quality evaluation three different a posteriori error estimates are studied for the two mesh types on the different mesh sizes. The results are: the block-structured grid generation technique is about 10–20 times faster than the tetrahedral full automatic technique. While the mean field error estimates are comparable for both meshes, the maximum field error estimates for the block-structured meshes are only half of those for the tetrahedral meshes. Reaching simulation results of the same quality the hexahedral mesh needs about 20–40% less iterations with comparable mesh sizes. The time per iteration for the hexahedral meshes are up to 94% smaller than for the tetrahedral meshes. This makes the semi-automatic block-structured grid generation technique especially suitable for parameter studies and for the investigation of micro-scale flows in foam structures consisting of large quantities of Kelvin cells.  相似文献   

6.
Numerical simulations have been performed on the pressure-driven rarefied flow through channels with a sudden contraction–expansion of 2:1:2 using isothermal two and three-dimensional lattice Boltzmann method (LBM). In the LBM, a Bosanquet-type effective viscosity and a modified second-order slip boundary condition are used to account for the rarefaction effect on gas viscosity to cover the slip and transition flow regimes, that is, a wider range of Knudsen number. Firstly, the in-house LBM code is verified by comparing the computed pressure distribution and flow pattern with experimental ones measured by others. The verified code is then used to study the effects of the outlet Knudsen number Kn o , driving pressure ratio P i /P o , and Reynolds number Re, respectively, varied in the ranges of 0.001–1.0, 1.15–5.0, and 0.02–120, on the pressure distributions and flow patterns as well as to document the differences between continuum and rarefied flows. Results are discussed in terms of the distributions of local pressure, Knudsen number, centerline velocity, and Mach number. The variations of flow patterns and vortex length with Kn o and Re are also documented. Moreover, a critical Knudsen number is identified to be Kn oc  = 0.1 below and above which the behaviors of nonlinear pressure profile and velocity distribution and the variations of vortex length with Re upstream and downstream of constriction are different from those of continuum flows.  相似文献   

7.
Flow patterns past two nearby circular cylinders of equal diameter immersed in the cross-flow at low Reynolds numbers (Re ? 160), were numerically studied using an immersed boundary method. We considered all possible arrangements of the two cylinders in terms of the distance between the two cylinders and the inclination angle of the line connecting the cylinder centers with respect to the direction of the main flow. Ten distinct flow patterns were identified in total based on vorticity contours and streamlines, which are Steady, Near-Steady, Base-Bleed, Biased-Base-Bleed, Shear-Layer-Reattachment, Induced-Separation, Vortex-Impingement, Flip-Flopping, Modulated Periodic, and Synchronized-Vortex-Shedding. Collecting all the numerical results obtained, we propose a general flow-pattern diagram for each Re, and a contour diagram on vortex-shedding frequency for each cylinder at Re = 100. The perfect symmetry implied in the geometrical configuration allows one to use these diagrams to identify flow pattern and vortex-shedding frequencies in the presence of two circular cylinders of equal diameter arbitrarily positioned in physical space with respect to the main-flow direction.  相似文献   

8.
Data-driven constituent transport models (CTM), which take surface current measurements from High Frequency (HF) Radar as input can be applied within the context of real-time environmental monitoring, oceanographic assessment, response to episodic events, as well as search and rescue in surface waters.This paper discusses a numerical method that allows for the evaluation of diffusion coefficients in anisotropic flow fields from surface current measurements using HF Radar. The numerical scheme developed was incorporated into a data-driven CTM and through model error analyses, the effects of using spatially variable transport coefficients on model predictions were examined. The error analyses were performed on the model by varying the cell Reynolds number, Re = f(u,Kx) between 0.15 and 100, where u is the velocity vector within the flow field, K is a diffusivity tensor and Δx is the computational grid cell size.Two instantaneous releases of conservative material were then modeled, the model being initialized at two different locations within the domain. From the two simulation runs, marked differences in the predicted spatial extent of the conservative material resulting from the spatially varying diffusivity values within the study area were observed. Model predictions in terms of variance or size estimates of a diffusing patch were found to be more affected from using inaccurate diffusivity estimates, and less affected from using inaccurate current measurements. The largest errors occurred at Re > 2 associated with changing diffusivity values, going up to as much as a 25-fold difference in variance estimates at Re = 100. Very little effect on variance estimates due to varying velocity values were observed even at Re > 2. This model was applied within the framework of constituent tracking to Corpus Christi Bay in the Texas Gulf of Mexico region.  相似文献   

9.
The drag, lift and moment coefficients of differently shaped single particles have been determined as a function of the angle of incidence at particle Reynolds numbers between Re = 0.3 and 240 under different conditions. For this purpose simulations of the flow around these particles have been performed using the three-dimensional Lattice Boltzmann method. In the first case studied a particle is fixed in a uniform flow, in the second case the particle is rotating in a uniform flow to determine, among others, the Magnus lift force and in the third case the particle is fixed in a linear shear flow. In the first case six particle shapes are considered, i.e. a sphere, a spheroid, a cube, a cuboid and two cylinders with an axis ratio of 1 and 1.5, respectively. In the second and third case the sphere and the spheroid are considered. At the higher Re considered, the drag depends strongly on particle shape, the angle of incidence and particle rotation. The lift and the torque of both the sphere and the spheroid are strongly affected by particle rotation and fluid shear. For approximately Re ? 1, the shear induced lift for unbounded flow could not be simulated as the top and bottom wall have a significant influence in the current flow configuration. The shear induced lift of the sphere changes direction at approximately Re = 50 and the mean (over the orientation) shear induced lift of the spheroid changes direction at approximately Re = 90.  相似文献   

10.
Results of a numerical simulation of the flow in a model of the human nasal cavity using an AUSM-based method of second-order accuracy on a multi-block structured grid are presented and compared with experimental data. Computations are performed for inspiration and expiration at rest with Reynolds numbers Re=1560 and Re=1230 at the nostril, respectively. The comparison shows good agreement with experimental findings.  相似文献   

11.
Direct numerical simulations about the transition process from laminar to chaotic flow in square lid-driven cavity flows are considered in this paper. The chaotic flow regime is reached after a sequence of successive supercritical Hopf bifurcations to periodic, quasi-periodic, inverse period-doubling, period-doubling, and chaotic self-sustained flow regimes. The numerical experiments are conducted by solving the 2-D incompressible Navier-Stokes equations with increasing Reynolds numbers (Re). The spatial discretization consists of a seventh-order upwind-biased method for the convection term and a sixth-order central method for the diffusive term. The numerical experiments reveal that the first Hopf bifurcation takes place at Re equal to 7402±4%, and a consequent periodic flow with the frequency equal to 0.59 is obtained. As Re is increased to 10,300, a new fundamental frequency (FF) is added to the velocity spectrum and a quasi-periodic flow regime is reached. For slightly higher Re (10,325), the new FF disappears and the flow returns to a periodic regime. Furthermore, the flow experiences an inverse period doubling at 10,325 <Re< 10,700 and a period-doubling regime at 10,600 <Re< 10,900. Eventually, for flows with Re greater than 11,000, a scenario for the onset of chaotic flow is obtained. The transition processes are illustrated by increasing Re using time-velocity histories, Fourier power spectra, and the phase-space trajectories. In view of the conducted grid independent study, the values of the critical Re presented above are estimated to be accurate within ±4%.  相似文献   

12.
We present a validation strategy for enhancement of an unstructured industrial finite-volume solver designed for steady RANS problems for large-eddy-type simulation with near-wall modelling of incompressible high Reynolds number flow. Different parts of the projection-based discretisation are investigated to ensure LES capability of the numerical method. Turbulence model parameters are calibrated by using a minimisation of least-squares functionals for first and second order statistics of the basic benchmark problems decaying homogeneous turbulence and turbulent channel flow. Then the method is applied to the flow over a backward facing step at Reh = 37,500. Of special interest is the role of the spatial and temporal discretisation error for low order schemes. For wall-bounded flows, present results confirm existing best practice guidelines for mesh design. For free-shear layers, a sensor to quantify the resolution quality of the LES based on the resolved turbulent kinetic energy is presented and applied to the flow over a backward facing step at Reh = 37,500.  相似文献   

13.
Modifications of fluid flow within microscale flow passages by internal surface roughness is investigated in the laminar, transitional, and turbulent regimes using pressure-drop measurements and instantaneous velocity fields acquired by microscopic particle-image velocimetry (micro-PIV). The microchannel under study is rectangular in cross-section with an aspect ratio of 1:2 (depth: width) and a hydraulic diameter of Dh = 600 \upmu m.D_{\rm h} =600\,\upmu \hbox{m}. Measurements are first performed under smooth-wall conditions to establish the baseline flow characteristics within the microchannel followed by measurements for two different rough-wall cases [with RMS roughness heights of 7.51 \upmu m7.51\,\upmu \hbox{m} (0.0125D h) and 15.1 \upmu m15.1\,\upmu \hbox{m} (0.025D h)]. The roughness patterns under consideration are unique in that they are reminiscent of surface irregularities one might encounter in practical microchannels due to imperfect fabrication methods. The pressure-drop results reveal the onset of transition above Recr=1,800Re_{\rm cr}=1{,}800 for the smooth-wall case, consistent with the onset of transition at the macroscale, along with deviation from laminar behavior at progressively lower Re with increasing roughness. Mean velocity profiles computed from the micro-PIV ensembles at various Re for each surface condition confirm these trends, meaning RecrRe_{\rm cr} is a strong function of roughness. The ensembles of velocity fields at each Re and surface condition in the transitional regime are subdivided into fields embodying laminar behavior and fields containing disordered motions. This decomposition reveals a clear hastening of the flow toward a turbulent state due both to the roughness dependence of Re cr and an enhancement in the growth rate of the non-laminar fraction of the flow when the flow is in the early stages of transition. Nevertheless, the range of Re relative to Re cr over which the flow transitions from a laminar to a turbulent state is found to be essentially the same for all three surface conditions. From a structural viewpoint, instantaneous velocity fields embodying disordered behavior in the transitional regime are found to contain large-scale motions consistent with hairpin-vortex packets irrespective of surface condition. These observations are in accordance with the characteristics of transitional and turbulent flows at the macroscale and therefore indicate that the overall structural paradigm of the flow is relatively insensitive to roughness. From a quantitative viewpoint, however, the intensity of both the velocity fluctuations and structural activity appear to increase substantially with increasing roughness, particularly in the latter stages of transition. These differences are further supported by the trends of single-point statistics of the non-laminar ensembles and quadrant analysis in which an intensification of the velocity fluctuations by surface roughness is noted in the region close to the wall, particularly for the wall-normal fluctuations.  相似文献   

14.
Fourth order accurate methods of mehrstellen type are compared to second order accurate methods for the solution of the unsteady incompressible Navier-Stokes equations in their vorticity stream function formulation. These methods are applied to the study of separated flow around a circular cylinder at several Reynolds numbers. The impulsively started cylinder at Re = 200 and 550, is considered without symmetry restrictions. The features illustrated include the bulge phenomenon at Re = 200, the occurrence of secondary vortices depending on the schemes used at Re = 550, and of twin secondary vortices at Re = 3000. The Karman vortex street is investigated at Re = 200 with a uniform flow in the far field and with superimposed motions of the cylinder. In this last case, a frequency analysis has allowed a critical examination of results pertaining to locked-in situations with respect to confinement effects.  相似文献   

15.
This paper presents a 2D computational investigation on the dynamic stall phenomenon associated with unsteady flow around the NACA0012 airfoil at low Reynolds number (Rec ≈ 105). Two sets of oscillating patterns with different frequencies, mean oscillating angles and amplitudes are numerically simulated using Computational Fluid Dynamics (CFD), and the results obtained are validated against the corresponding published experimental data. It is concluded that the CFD prediction captures well the vortex-shedding predominated flow structure which is experimentally obtained and the results quantitatively agree well with the experimental data, except when the blade is at a very high angle of attack.  相似文献   

16.
Recent progress in the development of biosensors has created a demand for high-throughput sample preparation techniques that can be easily integrated into microfluidic or lab-on-a-chip platforms. One mechanism that may satisfy this demand is deterministic lateral displacement (DLD), which uses hydrodynamic forces to separate particles based on size. Numerous medically relevant cellular organisms, such as circulating tumor cells (10–15 µm) and red blood cells (6–8 µm), can be manipulated using microscale DLD devices. In general, these often-viscous samples require some form of dilution or other treatment prior to microfluidic transport, further increasing the need for high-throughput operation to compensate for the increased sample volume. However, high-throughput DLD devices will require a high flow rate, leading to an increase in Reynolds numbers (Re) much higher than those covered by existing studies for microscale (≤?100 µm) DLD devices. This study characterizes the separation performance for microscale DLD devices in the high-Re regime (10?<?Re?<?60) through numerical simulation and experimental validation. As Re increases, streamlines evolve and microvortices emerge in the wake of the pillars, resulting in a particle trajectory shift within the DLD array. This differs from previous DLD works, in that traditional models only account for streamlines that are characteristic of low-Re flow, with no consideration for the transformation of these streamlines with increasing Re. We have established a trend through numerical modeling, which agrees with our experimental findings, to serve as a guideline for microscale DLD performance in the high-Re regime. Finally, this new phenomenon could be exploited to design passive DLD devices with a dynamic separation range, controlled simply by adjusting the device flow rate.  相似文献   

17.
Micro particle shadow velocimetry is used to study the flow of water through microcircular sudden expansions of ratios e = 1.51 and e = 1.96 for inlet Reynolds numbers Re d < 120. Such flows give rise to annular vortices, trapped downstream of the expansions. The dependency of the vortex length on the Reynolds number Re d and the expansion ratio e is experimentally investigated in this study. Additionally, the shape of the axisymmetric annular vortex is quantified based on the visualization results. These measurements favorably follow the trends reported for larger scales in the literature. Redevelopment of the confined jet to the fully developed Poiseuille flow downstream of the expansion is also studied quantitatively. Furthermore, the experimentally resolved velocities are used to calculate high resolution static pressure gradient distributions along the channel walls. These measurements are then integrated into the axisymmetric momentum and energy balance equations, for the flow downstream of the expansion, to obtain the irreversible pressure drop in this geometry. As expected, the measured pressure drop coefficients for the range of Reynolds numbers studied here do not match the predictions of the available empirical correlations, which are commonly based turbulent flow studies. However, these results are in excellent agreement with previous numerical calculations. The pressure drop coefficient is found to strongly depend on the inlet Reynolds number for Re d < 50. Although no length-scale effect is observed for the range of channel diameters studied here, for Reynolds numbers Re d < 50, which are typical in microchannel applications, complex nonlinear trends in the flow dynamics and pressure drop measurements are discovered and discussed in this work.  相似文献   

18.
Incompressible turbulent flow over a backward facing step at Reh=5100 is investigated by large eddy simulations (LES). The ratio of the oncoming boundary layer thickness δ to the step height h was set to 1.2. Additionally channel flows at various Reτ numbers are presented for the validation of the numerical code. The results are compared with existing DNS and experimental databases. The present study focuses on different procedures for LES of engineering problems in complex geometries using structured rectangular grids. Two different methods that are able to treat complex geometrical configurations are implemented, examined and compared; namely the domain decomposition approach based on Schur’s complement and the immersed boundary method. In the present study both methods make use of a fast direct Poisson’s pressure solver based on a heavily modified version of the public domain package FISHPAK. The latter was optimised and fully parallelised for shared memory architectures, for solutions on rectangular grids stretched in one or two directions. The resulting code reaches performances of 1.0 μs/node/iter, allowing low cost computations on grids of the order of million points. The main objective of the present study was to investigate the potential of different methods for LES in complex geometrical configurations like bluff body flows and wakes. One of the main findings is that careful selection of numerical methods and implementation techniques can lead to accurate and very efficient codes, where the geometric complexity does not lead to algorithmic or numerical complexity.  相似文献   

19.
A numerical simulation of the flow past a circular cylinder which is able to oscillate transversely to the incident stream is presented in this paper for a fixed Reynolds number equal to 100. The 2D Navier-Stokes equations are solved by a finite volume method with an industrial CFD code in which a coupling procedure has been implemented in order to obtain the cylinder displacement. A preliminary work is first conducted for a fixed cylinder to check the wake characteristics for Reynolds numbers smaller than 150 in the laminar regime. The Strouhal frequency fS and the aerodynamic coefficients are thus controlled among other parameters. Simulations are then performed with forced oscillations characterized by the frequency ratio F = f0/fS, where f0 is the forced oscillation frequency, and by the adimensional amplitude A. The wake characteristics are analyzed using the time series of the fluctuating aerodynamic coefficients and their power spectral densities (PSD). The frequency content is then linked to the shape of the phase portraits and to the vortex shedding mode. By choosing interesting couples (AF), different vortex shedding modes have been observed, which are similar to those of the Williamson-Roshko map. A second batch of simulations involving free vibrations (so-called vortex-induced vibrations or VIV) is finally carried out. Oscillations of the cylinder are now directly induced by the vortex shedding process in the wake and therefore, the time integration of the motion is realized by an explicit staggered algorithm which provides the cylinder displacement according to the aerodynamic charges exerted on the cylinder wall. Amplitude and frequency response of the cylinder are thus investigated over a wide range of reduced velocities to observe the different phenomena at stake. In particular, the vortex shedding modes have also been related to the frequency response observed and our results at Re = 100 show a very good agreement with other studies using different numerical approaches.  相似文献   

20.
A method for the localization of small scales in turbulent velocity fields is proposed. The method is based on the definition of a function f of the velocity and vorticity fields that reproduces a normalized form of the twisting-stretching term of the Helmholtz equation. By means of this method the equations of motion can be selectively filtered in regions that are rich in small scale motions. The method is applied through a criterion built on a statistical link between the function f and a local property of the turbulence that was derived from the analysis a homogeneous and isotropic high Reynolds number (Reλ=280) turbulence field. The localization criterion is independent of the subgrid scale model used in a possible Large Eddy Simulation carried out after the small scale localization is obtained. This extends the typology of possible applications to the analysis of experimental laboratory data. In case of compressible regimes, a second sensor that depends on the local pressure variation and divergence can be associated to the previous one in order to determine the eventual emergence of shocks. The capture of shocks is made possible by suppressing the subgrid terms where this second sensor indicates the presence of a shock.A priori tests were carried out on the turbulent channel flow, Reλ=180 and 590, to validate the localization procedure in a highly inhomogeneous flow configuration. A second set of a priori test was carried out on a turbulent time decaying jet which initiates its evolution at Mach 5 and which reproduces a few hydrodynamical properties of high Reynolds number hypersonic jets which exist in the Universe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号