首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Three batches of Manchego cheese were manufactured using one of the following starter culture systems: (1) a defined strain starter culture comprising Lactococcus lactis subsp. lactis and Leuconostoc mesenteroides subsp. dextranicum; (2) the above-defined strain starter culture and an adjunct culture (Lactobacillus plantarum), all these strains being isolated from high-quality Manchego cheeses and (3) a commercial starter consisting of two strains of Lactococcus lactis. Differences in volatile profile and the sensory characteristics of these cheeses were studied. After 4 months of ripening, the two batches of cheese made with the defined strain starter cultures obtained the highest scores for sensory attributes and for the overall impression. Additionally, Purge & Trap and SDE analysis showed a more complex volatile profile in these cheeses than in those made with the commercial starter. Extending the maturation time to 8 months for cheeses made with the defined starter cultures led to significant higher levels of free fatty acids and ethyl esters in those cheeses made without adjunct culture. However, panelists did not find significant differences among the sensory characteristics of the two cheeses.  相似文献   

2.
Two different autochthonous strain starter cultures, in which the acidifying starter was composed of strains of Lactococcus lactis, were used for the manufacture of pasteurised milk Manchego cheese. Proteolysis parameters, biogenic amines and sensory characteristics were evaluated and compared with those of commercial starter Manchego cheese and raw milk Manchego cheese manufactured without starter. Autochthonous starter cheeses, and especially those including Lactobacillus paracasei subsp. paracasei as adjunct, presented higher levels of proteolysis than in commercial starter cheese. The concentrations of total biogenic amines in autochthonous starter cheeses were much lower than in raw milk cheese and even lower than in commercial starter cheese. Cheese manufactured with the adjunct strain gave the best results for both flavour intensity and flavour quality, and was the most preferred by panellists. The results suggest that the culture containing Lb. paracasei subsp. paracasei as adjunct could be used for the manufacture of industrial Manchego cheese.  相似文献   

3.
The use of several autochthonous strains of lactic acid bacteria, including Lactobacillus paracasei subsp. paracasei as adjunct of the starter in the manufacture of Manchego cheese, was evaluated in an attempt to improve the aroma of the industrial Manchego cheese. Volatile composition and odour characteristics were evaluated and compared to those in Manchego cheese manufactured with a commercial starter (CS) culture and with raw milk cheese manufactured without starter. Manchego cheeses manufactured with two autochthonous strains of Lactococcus lactis subsp. lactis displayed a similar volatile profile and odour characteristics to the cheese made with the CS. The use of the strain Lactobacillus paracasei subsp. paracasei CECT 7882 as adjunct of the Lactococcus strains produced cheeses with higher amounts of some free fatty acids and alcohols, acetoin, lactones, phenylacetaldehyde, 2-phenylethanol and linalool, and higher scores of the odour intensity, odour quality, and ewe’s milk odour than the CS cheeses. It resulted in an intensification and improvement of industrial Manchego cheese aroma.  相似文献   

4.
Cheese ripening acceleration is of continuous interest for the industry. High-pressure (HP) treatment of starter cultures used in cheese-manufacturing offers the potential to accelerate ripening by increasing the activity of their intracellular peptidases that contribute in the development of desired cheese organoleptic characteristics.The objective of the present research was the investigation of the effect of HP treatment (200 MPa-20 °C - 20 min) directly on white brined cheese or on the starter culture used for its manufacture (Str. thermophilus:L. lactis:L. bugaricus 2:1:1). For this purpose, the microbial, textural, physicochemical and organoleptic characteristics and proteolysis were assessed during the 2nd stage of ripening in cold stores. Control cheese without any treatment was also studied.Cheeses made with HP-treated starters had increased secondary proteolysis. Organoleptic scoring of these cheeses was higher during the whole storage period compared to control and HP-treated cheese. Their superiority was evident even at the early stages of ripening in cold stores, since no bitterness was detected. On the contrary, although HP treated cheeses showed the highest increase in aminopeptidases activities, this was not correlated with the studied ripening indices or the organoleptic characteristics.According to the results, HP-treated starter culture can accelerate proteolysis and potentially the ripening of cheese-in-brine.Industrial relevanceThe data obtained from this work suggest that application of HP treatment under optimized conditions on cheeses in brine starter cultures or on whole cheeses can be effectively used for the production of products with reduced ripening time. This is of great importance for the cheese industries, since the storage period for ripening is long (higher than two months), while applying HP treatment as suggested in this study, this time may be reduced to less than one month, producing cheeses of superior quality.  相似文献   

5.
The microbial dynamics of Dutch-type cheeses differing in starter (commercial DL starter or single strain of Lactococcus lactis ssp. cremoris), adjunct (Lactobacillus or Propionibacterium) and fat contents (10% or 28% fat) were investigated by culture-dependent and culture-independent analysis. The cheese microbiota was dominated by the adjunct Lactobacillus after 4 weeks of ripening and the fat content did not influence the microbial diversity. The Leuconostoc sp., presumably from the DL starter, was detected in cheeses made with added Lactobacillus plantarum and Lactobacillus rhamnosus and was not detected in cheese made with added Lactobacillus paracasei after 4 and 7 weeks. No Lactobacillus spp. were detected in cheese with added Propionibacterium, while Leuconostoc was the only species detected. In cheeses made with Lc. lactis ssp. cremoris as starter, the Lactobacillus microbiota was similar to the cheese milk microbiota after 24 h while after 4 weeks different species of Lactobacillus and Leuconostoc were detected.  相似文献   

6.
The antimicrobial activity of two pediocin-producing transformants obtained from wild strains of Lactococcus lactis on the survival of Listeria monocytogenes, Staphylococcus aureus and Escherichia coli O157:H7 during cheese ripening was investigated. Cheeses were manufactured from milk inoculated with the three pathogens, each at approximately 6 log cfu mL−1. Pediococcus acidilactici 347 (Ped+), Lc. lactis ESI 153, Lc. lactis ESI 515 (Nis+) and their respective pediocin-producing transformants Lc. lactis CL1 (Ped+) and Lc. lactis CL2 (Nis+, Ped+) were added at 1% as adjuncts to the starter culture. After 30 d, L. monocytogenes, S. aureus and E. coli O157:H7 counts were 5.30, 5.16 and 4.14 log cfu g−1 in control cheese made without adjunct culture. On day 30, pediocin-producing derivatives Lc. lactis CL1 and Lc. lactis CL2 lowered L. monocytogenes counts by 2.97 and 1.64 log units, S. aureus by 0.98 and 0.40 log units, and E. coli O157:H7 by 0.84 and 1.69 log units with respect to control cheese. All cheeses made with nisin-producing LAB exhibited bacteriocin activity throughout ripening. Pediocin activity was only detected throughout the whole ripening period in cheese with Lc. lactis CL1. Because of the antimicrobial activity of pediocin PA-1, its production in situ by strains of LAB growing efficiently in milk would extend the application of this bacteriocin in cheese manufacture.  相似文献   

7.
This study characterised exopolysaccharide-producing lactic acid bacteria and examined their potential for use in Cheddar cheese manufacture. Two strains were chosen for incorporation as adjunct cultures in Cheddar cheese manufacture: namely, the homopolysaccharide-producers Weissella cibaria MG1 and Lactobacillus reuteri cc2. These strains both produce dextrans with molecular masses ranging from 105 to 107 Da. Both strains were used in the production of miniature Cheddar cheeses that employed a conventional commercial cheese starter culture Lactococcus lactis R604. A cheese was also included that used purified dextran as an ingredient. The W. cibaria strain survived in cheese with levels increasing by 1.5 log cycles over the ripening period. All experimental cheeses (adjunct or exopolysaccharide ingredient) had higher moisture levels compared with the control cheese made using starter alone. Inclusion of the adjunct strains had no detectable negative effects on cheeses in terms of proteolysis.  相似文献   

8.
The influence of bacteria and sunflower oil addition on conjugated linoleic acid content (CLA) in buffalo cheese was determined. Fresh and short-ripened cheeses were manufactured using the same starter culture and four different adjunct strains previously selected by their CLA production rate. Lactobacillus casei, Lactobacillus rhamnosus, Bifidobacterium bifidum and Streptococcus thermophilus were individually used as adjunct culture. Sunflower oil (SO) was added to obtain a final concentration of 200 μg/ml of linoleic acid. CLA levels in cheese were higher than raw milk, especially after ripening time. SO supplementation increase CLA concentrations in fresh cheeses, except in those manufactured with S. thermophilus as adjunct culture. Both, ripening and SO supplementation showed a positive influence on CLA concentration. Similar texture, acidity and colour were determined in cheeses with or without SO supplementation. Buffalo cheeses manufactured with appropriate adjunct cultures may be a natural source of CLA for human consumption.  相似文献   

9.
Six batches of Armada cheese were produced, one from raw milk with no added starter, another from pasteurized milk with a commercial mesophilic starter and four from pasteurized milk with experimental starters. These starters included: Lactococcus lactis subsp. lactis and L. lactis subsp. lactis biovar. diacetylactis; or the same strains plus either Enterococcus raffinosus, Leuconostoc mesenteroides subsp. dextranicum or Lactobacillus plantarum, all isolated from Armada cheese made from raw milk. The highest counts of aerobic mesophilic bacteria and populations of lactic acid bacteria for all batches were reached in the first week of ripening. These counts declined later throughout the ripening, although not at identical rates in every batch. Counts of lactobacilli were significantly higher in cheeses made from raw milk and those inoculated with the lactobacilli strain than in the other batches, over the whole ripening period. Added native starters minimized growth of Enterobacteriaceae. Cheeses made with the starter containing the Enterococcus strain had the most favourable sensory attributes throughout ripening.  相似文献   

10.
Raw milk cheeses have more intense flavours than cheeses made from pasteurized milk and harbour strains with potential adjunct properties. Two Lactobacillus paracasei strains, R-40926 and R-40937, were selected as potential adjunct cultures from a total of 734 isolates from good quality artisan raw milk Gouda-type cheeses on the basis of their prevalence in different cheese types and/or over several production batches, safety and technological parameters. Conventional culturing, isolation and identification and a combined PCR-DGGE approach using total cheese DNA extracts and DNA extracts obtained from culturable fractions were employed to monitor viability of the introduced adjuncts and their effect on the cheese microbiota. The control cheese made without adjuncts was dominated by members of the starter, i.e. Lactococcus lactis and Leuconostoc pseudomesenteroides. In the cheeses containing either R-40926 or R-40937, the respective adjuncts increased in number as ripening progressed indicating that both strains are well adapted to the cheese environment and can survive in a competitive environment in the presence of a commercial starter culture. Principal component analysis of cheese volatiles determined by steam distillation-extraction and gas chromatography-mass spectrometry could differentiate cheeses made with different concentrations of adjunct R-40926 from the control cheese, and these differences could be correlated to the proteolytic and lipolytic properties of this strain. Collectively, results from microbiological and metabolic analyses indicate that the screening procedure followed throughout this study was successful in delivering potential adjunct candidates to enrich or extend the flavour palette of artisan Gouda-type cheeses under more controlled conditions.  相似文献   

11.
The effects of microfiltration and pasteurization processes on proteolysis, lipolysis, and flavor development in Domiati cheese during 2 mo of pickling were studied. Cultures of starter lactic acid bacteria isolated from Egyptian dairy products were evaluated in experimental Domiati cheese for flavor development capabilities. In the first trial, raw skim milk was microfiltered and then the protein:fat ratio was standardized using pasteurized cream. Pasteurized milk with same protein:fat ratio was also used in the second trial. The chemical composition of cheeses seemed to be affected by milk treatment—microfiltration or pasteurization—rather than by the culture types. The moisture content was higher and the pH was lower in pasteurized milk cheeses than in microfiltered milk cheeses at d 1 of manufacture. Chemical composition of experimental cheeses was within the legal limits for Domiati cheese in Egypt. Proteolysis and lipolysis during cheese pickling were lower in microfiltered milk cheeses compared with pasteurized milk cheeses. Highly significant variations in free amino acids, free fatty acids, and sensory evaluation were found among the cultures used in Domiati cheesemaking. The cheese made using adjunct culture containing Lactobacillus delbrueckii ssp. lactis, Lactobacillus paracasei ssp. paracasei, Lactobacillus casei, Lactobacillus plantarum, and Enterococcus faecium received high scores in flavor acceptability. Cheeses made from microfiltered milk received a higher score in body and texture compared with cheeses made from pasteurized milk.  相似文献   

12.
Attenuated starter bacteria cannot produce acid during cheese manufacture, but contain enzymes that contribute to cheese ripening. The aim of this study was to investigate attenuation of starter bacteria using high pressure treatment, for use in combination with a primary starter for Cheddar cheese manufacture, and to determine the effect of such adjunct cultures on secondary proteolysis during ripening. Lactococcus lactis ssp. cremoris HP and L. lactis ssp. cremoris 303 were attenuated by pressure treatment at 200 MPa for 20 min at 20 °C. Cheddar cheese was manufactured using untreated cultures of both these starter strains, either alone or in combination with their high pressure-treated equivalents. High pressure-treated starters did not produce acid during cheese manufacture and starter counts in cheeses manufactured using high pressure-treated starter did not differ from those of the controls. Higher levels of cell lysis were apparent in cheese manufactured using high pressure-treated strains than in the controls after 26 d of ripening. Small differences were observed in the peptide profiles of cheeses, analysed by reversed-phase HPLC; cheeses manufactured using high pressure-treated starters also had slightly higher levels of amino acids than the relevant controls. Overall, addition of high pressure-treated starter bacteria as a secondary starter culture accelerated secondary proteolysis in Cheddar cheese.

Industrial relevance

Attenuated starters provide extra pool of enzymes, which can influence cheese ripening, without affecting the cheese making schedule. This paper presents an alternative method for attenuation of starter bacteria using high pressure treatment and their subsequent use to accelerate secondary proteolysis in Cheddar cheese during ripening.  相似文献   

13.
The contributions of the coagulant Cynara cardunculus and of the microflora of raw milk to the volatile-free fatty acid profile of Serra da Estrela cheese were evaluated. The experimental design included both a model system and, dual cheeses. The study in the model system showed that isovaleric acid was the predominant volatile compound after 7 d of ripening. The systems inoculated with Enterococcus faecium produced the highest amount of this volatile (ca. 135.8 mg kg−1 curd), while those inoculated with Lactobacillus plantarum produced the least (21.4 mg kg−1 curd); Lactococcus lactis produced moderate amounts (ca. 34.2 mg kg−1 curd) but a total amount of volatile-free fatty acids similar to those found in control samples. This is considered advantageous since this volatile fatty acid confers a harsh, piquant, mature flavour to cheese, coupled with the realisation that excess volatiles may result in off-flavours. The addition of cultures in experimental cheeses helped reduce ripening time to about one half. Inclusion of Lb. plantarum led to cheeses containing the highest amounts of volatiles, and exhibiting an aroma closest to that of typical Serra da Estrela cheese.  相似文献   

14.
《International Dairy Journal》2005,15(6-9):571-578
The production of biogenic amines (BA) during the manufacturing and ripening of sheep milk Pecorino Abruzzese cheeses prepared from raw milk without starter culture (A) and from pasteurized milk with added starter (B) were compared. At the end of ripening (60 days), the total BA contents of cheeses of batches A and B were 697 and 1086 mg kg−1, respectively; the dominant BA were different. Single isolates of enterococci, pseudomonads and Enterobacteriaceae were screened for their potential to produce BA. Qualitative tests indicated a large spread of BA-forming cultures among the members of the Enterobacteriaceae and lactic acid bacteria (LAB). Differences among the levels of BA produced in UHT milk by representative isolates of coliforms, Pseudomonas and LAB were observed in relation to the microbial group or the isolate. The results emphasize the need to improve the general hygienic conditions of Pecorino Abruzzese cheese manufacture and control the indigenous bacterial population.  相似文献   

15.
In the manufacture of model cheeses, ovine milk was deliberately contaminated with spores of Clostridium beijerinckii INIA 63, a wild isolate from Manchego cheese with late blowing defect, and inoculated with nisin- and lacticin 481-producing Lactococcus lactis subsp. lactis INIA 415 as starter, to test its potential to prevent the late blowing defect, or with L. lactis subsp. lactis INIA 415-2, a spontaneous mutant not producing bacteriocins. Cheeses made individually with the lactococcal strains, without clostridial spores, served as controls. Cheese made with clostridial spores and L. lactis subsp. lactis INIA 415-2 showed late blowing defect after 120 days of ripening. Spoilt cheese also showed lower concentrations of lactic acid, and higher levels of acetic, propionic and butyric acids, and of other volatile compounds such as 2-propanol and 1-butanol, than control cheese. In addition, cheese made with the bacteriocin producer did not show any late blowing symptoms, despite its spore counts similar to those of blown cheese, pointing to outgrowth inhibition of C. beijerinckii spores by bacteriocins. Besides, cheese made with the bacteriocin producer showed similar concentrations of lactic acid and volatile compounds than control cheese. Inclusion of L. lactis subsp. lactis INIA 415 in starter cultures seems a feasible method to prevent late blowing defect in cheese without altering its sensory characteristics.  相似文献   

16.
The effect of two commercially available adjunct cultures, LBC 80 (Lactobacillus casei subsp. rhamnosus) and CR-213 (containing Lactococcus lactis subsp. cremoris and Lc. lactis subsp. lactis) on the proteolysis in low-fat hard ewes’ milk cheese of Kefalograviera-type was investigated. Two controls, a full-fat cheese (306 g kg−1 fat, 378 g kg−1 moisture) and a low-fat cheese (97 g kg−1 fat, 486 g kg−1 moisture, made using a modified procedure), were also prepared. The effect of adjunct culture on proteolysis, as examined by polyacrylamide gel electrophoresis of cheese and water soluble cheese extracts, was marginal. The reverse-phase HPLC peptide profiles of the water soluble extracts from low-fat cheeses were similar although some quantitative differences were observed between low-fat control cheese and experimental cheeses. The fat content as reflected by the differences in peptide profiles affected the pattern of proteolysis. Proteolysis, as measured by the percentage of total nitrogen soluble in water or in 120 g L−1 trichloroacetic acid, was significantly (P<0.05) affected by the addition of adjunct cultures. Furthermore, the adjunct cultures enhanced the production of low molecular mass nitrogenous compounds; the levels of total nitrogen, soluble in 50 g L−1 phosphotungstic acid, and of free amino acids were significantly (P<0.05) higher in the low-fat experimental cheeses than in the low-fat control cheese.  相似文献   

17.
In this study, 2 different starter culture combinations were prepared for cheesemaking. Starter culture combinations were formed from 8 strains of lactic acid bacteria. They were identified as Lactococcus lactis ssp. lactis (2 strains), Lactobacillus plantarum (5 strains), and Lactobacillus paraplantarum (1 strain) by amplified fragment length polymorphism analysis. The effects of these combinations on the physicochemical and microbiological properties of Beyaz cheeses were investigated. These cheeses were compared with Beyaz cheeses that were produced with a commercial starter culture containing Lc. lactis ssp. lactis and Lc. lactis ssp. cremoris as control. All cheeses were ripened in brine at 4°C for 90 d. Dry matter, fat in dry matter, titratable acidity, pH, salt in dry matter, total N, water-soluble N, and ripening index were determined. Sodium dodecyl sulfate-PAGE patterns of cheeses showed that αS-casein and β-casein degraded slightly during the ripening period. Lactic acid bacteria, total mesophilic aerobic bacteria, yeast, molds, and coliforms were also counted. All analyses were repeated twice during d 7, 30, 60, and 90. The starter culture combinations were found to be significantly different from the control group in pH, salt content, and lactobacilli, lactococci, and total mesophilic aerobic bacteria counts, whereas the cheeses were similar in fat, dry matter content, and coliform, yeast, and mold counts. The sensory analysis of cheeses indicated that textural properties of control cheeses presented somewhat lower scores than those of the test groups. The panelists preferred the tastes of treatment cheeses, whereas cheeses with starter culture combinations and control cheeses had similar scores for appearance and flavor. These results indicated that both starter culture combinations are suitable for Beyaz cheese production.  相似文献   

18.
The effect of the concentration of starter inoculated to milk on the composition, free tyrosine-tryptophan content, microstructure, opacity, and fracture stress of Iranian White cheese (IWC) was studied during 50 d of ripening in brine. Three treatments of cheese were made using 1-fold (IWC1S), 2-fold (IWC2S), and 4-fold (IWC4S) concentrations of a direct-to-vat mesophilic mixed culture containing Lactococcus lactis ssp. cremoris and Lactococcus lactis ssp. lactis as starter. As ripening progressed, moisture and protein contents of the treatments continuously decreased, whereas their total ash, salt, and salt in moisture contents increased. Fat content and pH of cheeses remained stable during ripening. The pH of cheese milk at the time of renneting, which decreased by increasing the concentration of starter (6.57, 6.49, and 6.29 for IWC1S, IWC2S, and IWC4S, respectively), significantly affected most of the chemical characteristics and opacity of cheese. Lower pH values at renneting decreased moisture and ash contents, whereas cheese protein content increased. The concentration of free tyrosine-tryptophan in curd increased at first 29 d but decreased between d 29 and 49 of aging. The changes observed in cheese whiteness followed the changes in moisture content of the treatments. As the concentration of starter inoculated to milk increased, the value of fracture stress at a given ripening time significantly decreased, leading to a less resistant body against applied stress. A similar trend was also observed for fracture strain during cheese ripening. The micrographs taken by scanning electron microscopy provided a meaningful explanation for decrease in the value of fracture stress. As the cheese ripening progressed or the concentration of starter increased, the surface area occupied by the protein fraction in cheese microstructure decreased, leading the way to lower the force-bearing component in cheese texture.  相似文献   

19.
The isolation and identification of lactic acid bacteria (LAB) from raw ewes’ milk and traditional Pecorino Sardo cheese made from this milk without the addition of starter culture was carried out to define the autochthonous lactic microflora present in milk and the evolution of LAB during cheese ripening. Isolation of 275 strains belonging to different Lactococcus, Lactobacillus, Streptococcus and Enterococcus species was achieved. Coccal-shaped LAB were found to predominate during cheese fermentation, while lactobacilli were preponderate during the latter phase of ripening. The technological selection of a total of 174 LAB strains belonging to the species Lactococcus lactis, Streptococcus thermophilus, Lactobacillus helveticus and Lb. casei allowed an experimental starter to be prepared, in which a potentially probiotic species, Lb. casei was used. The suitability of the autochthonous starter culture was tested in cheese-making trials, using thermised ewes’ milk, by comparing experimental Pecorino Sardo cheese with a control cheese produced at industrial scale using a whey starter culture from previous batches of manufacture. In particular, microbiological and physicochemical parameters were determined over 210 days of cheese ripening. Although sensory evaluation did not show any significant difference between experimental and control Pecorino Sardo cheeses, the use of the selected autochthonous starter allowed the production of experimental cheese with a significantly higher level of free amino acids, in particular essential amino acids, in comparison with the Pecorino Sardo control cheeses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号