首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An integrated simulation of powder effects on particle temperature and microstructural evolution in laser directed energy deposition additive manufacturing process was carried out. The spatial distribution of the flying powder particles was simulated by the discrete element method to calculate the energy for the flying powder particles under the laser–particle interaction with electromagnetic wave analysis. Combined with the phase field method, the influence of particle size on the microstructural evolution was studied. The microstructural evolution is validated through comparison with experimental observation. Results indicate that the narrow particle size distribution is beneficial to obtaining a more uniform temperature distribution on the deposited layers and forming smaller equiaxed grains near the side surfaces of the sample. Appropriate powder particle size is beneficial to the conversion of the electromagnetic energy into heat. Particles with small size are recommended to form equiaxed grains and to improve product quality. Appropriate powder flow rate improves the laser energy efficiency, and higher powder flow rate leads to more uniform equiaxed grains on both sides of the cross-section.  相似文献   

2.
采用球磨制备Mo-0.1Zr粉末,经压制成型、预烧、高温烧结和真空热处理后,制备抗拉强度超过650 MPa、伸长率大于30%的高强韧Mo-0.1Zr合金,研究真空热处理对合金性能与显微组织的影响。结果表明:经高温烧结后,Mo-0.1Zr合金与纯Mo相比性能提高不明显,断口形貌呈明显的沿晶脆性断裂特征;但经真空热处理后,Mo-0.1Zr合金的性能显著提高,抗拉强度提高了40%、伸长率从7.3%提高到31.2%,合金断口也由沿晶脆性断裂转变为穿晶韧性断裂,且部分晶粒呈韧性撕裂特征。真空热处理温度对合金性能的影响很大,真空热处理温度过高容易使晶粒长大,导致性能提高程度下降;而真空热处理温度过低难以起到消除晶体缺陷的作用,对合金性能提高有限。  相似文献   

3.
局部输入的集中移动热源造成了选择性激光烧结过程中温度场分布不均衡且不稳定,因此研究其温度场对掌握烧结过程中温度动态分布规律具有重要意义。在考虑了热传导、热辐射和热对流,材料的非线性热物性参数和相变潜热的作用下,建立了水雾化Fe多道烧结的三维有限元模型,采用ANSYS参数化设计语言(APDL)实现移动的高斯热源的加载。模拟结果表明:激光烧结过程中,在光斑中心前端存在着较大的温度梯度;光斑中心的温度高于金属粉末的熔点,烧结过程存在液相;粉床内部温度场在深度方向呈漏斗状阶梯分布,随烧结深度的增加,粉床内部的温度和温度梯度迅速衰减;同一烧结道各点的最高温度相对稳定,但随着烧结道的增加,各点最高温度都有小幅度增加的趋势,这是温度累加的结果。  相似文献   

4.
马小龙  余建军  李永娣  赵涛 《贵金属》2017,38(1):27-30, 35
Ag-Mg-Ni合金的内氧化影响其显微组织和力学性能。研究了Ag-0.3Mg-0.2Ni合金在不同热处理条件下的显微组织和力学性能变化。结果表明,随着热处理温度增加,合金的显微硬度先降后升,金相显微组织由典型的纤维状特征转变为等轴晶;随着保温时间延长,晶粒逐渐长大,硬度提高;热处理温度在400℃以上时,Ag-Mg-Ni合金开始发生内氧化,升高温度能够加速内氧化过程,600℃保温6 h或800℃保温2 h可获得显微硬度(Hv_(0.02))在140以上的Ag-0.3Mg-0.2Ni。  相似文献   

5.
采用反应等离子喷涂技术制备了TiN涂层,并收集了少量TiN颗粒;采用SEM对涂层和TiN颗粒的横断面肜貌进行分析,研究了喷涂过程中的反应过程和涂层的形成过程.结果表明:Ti粉与N_2的反应为燃烧合成反应.反应过崔中释放出大量的热量,此反应在颗粒的表面进行;TiN涂层具有典型的层状组织结构,且层与层之间结合较好.  相似文献   

6.
采用粉末冶金法制备了AlxCuFeNiCoCr高熵合金。研究了铝含量对合金性能和组织的影响,并讨论了合金制备过程中晶粒性能的变化。结果表明,在球磨过程中合金晶粒细化,且合金晶粒尺寸随Al含量的增加而增大。在烧结过程中,合金中会产生新的晶粒,并首先吸收一定热量形成含Al的金属间化合物。在1200 ℃加热2 h后,获得具有简单晶体结构的相,证实了高熵合金的形成。根据获得的能谱,合金组成均匀,合金化程度高。然而,随着Al含量的增加,出现了少量具有高Al含量的高对比度区域。合金具有良好的高温抗氧化性能和抗电化学腐蚀性能。随着铝含量的增加,合金的高温抗氧化性能提高。当Al含量为1mol%时,自腐蚀电压为-235 mV。随着Al含量的增加,硬度也增加。结果表明,当Al含量为1mol%时,合金具有最佳综合性能。  相似文献   

7.
1 INTRODUCTIONAmongcriticalissuesinthepowderinjection moldingprocesstherearethecontrolandavoidanceofdistortionduringthermaldebindingandthemini mizationofstressesinthecompactafterdiefilling[1] .Aftermoldingthestrengthofthecompactsisdepen dentontheparticle…  相似文献   

8.
Geng  Ru-wei  Du  Jun  Wei  Zheng-ying  Zhao  Guang-xi 《中国铸造》2017,14(5):346-352
The mechanical properties of metal components are determined by the solidification behavior and microstructure. A quantitative phase field model is used to investigate the microstructure evolution of fused-coating additive manufacturing, by which to improve the quality of deposition. During the fused-coating process, the molten metal in a crucible flows out of a nozzle and then reaches the substrate. The solidification happens at the moment when the molten metal comes into contact with substrate moving in three-dimensional space. The macroscopic heat transfer model of fused-coating is established to get the temperature field considered as the initial temperature boundary conditions in the phase field model. The numerical and experimental results show that the morphology of grains varies with different solidification environments. Columnar grains are observed during the early period at the bottom of fused-coating layer and the equiaxed grains appear subsequently ahead of the columnar grains. Columnar dendrites phase field simulations about the grains morphology and solute distribution are conducted considering the solidification environments. The simulation results are in good agreement with experimental results.  相似文献   

9.
介绍了09MnNiDR低温钢管的焊材、焊接方法、后续热处理以及检测工艺的选择和试制情况。认为:09MnNiDR低温钢管的质量取决于焊材和焊接能量,选取焊丝CHW-S13、焊剂CHF105DR,并遵守热输入优先控制原则,其焊缝具有稳定的抗低温冲击性能;在JCOE生产线上采用双面多丝埋弧焊,可起到多道焊接的效果,细化晶粒,得到针状铁素体;采用保温温度590~620℃、保温时间60 min、300℃以下出炉空冷的后续热处理,可提高焊接接头的性能。  相似文献   

10.
激光熔覆是一种高能束增材修复技术,具有热影响区小、组织性能可控性强、材料选择范围广等系列优势,目前已广泛应用于能源动力等领域关键金属构件的增材制造成形与受损零部件的修复再制造中。激光熔覆是以“激光”为热源的能量沉积技术,包括高能激光束冲击、表面熔池熔化快凝及熔覆表面层形成等多种物理、化学过程,其中熔池内金属热流体动力演化行为与熔覆层缺陷及表层组织性能调控密切相关。金属熔池具有“急热骤冷”的凝固特征,其内部对流、传热和传质等行为决定了熔覆层中温度及应力分布状态,是诱导熔覆层内气孔、裂纹等组织内部缺陷形成的关键因素。从激光熔覆过程中熔池内部对流、传热与传质的动态物理特性出发,论述了激光热源的理论模型设计、动态熔池中“流场+温度场+应力场”的多物理场数值模拟等方面的相关研究。在此基础上,分析了激光熔覆层典型缺陷-裂纹和气孔的形成机理及特征,总结了“材料-工艺-熔凝行为-涂层缺陷”的内在关联机制。同时,针对单一工艺方式调控熔池内熔凝过程的局限性,概述了多种复合能量场调控技术对熔覆层内部缺陷的作用机制与调控效果。最后,总结了当前激光熔覆层缺陷动态形成过程中存在的问题,并对其发展趋势进行了展望。  相似文献   

11.
The La doped WC/Co powder was prepared by high energy ball milling. The changes of crystal structure, micrograph and defect of the powder were investigated by means of XRD (X-ray diffraction), SEM (scanning electron microscope) and DTA (differential thermal analysis). The results show that adding trace La element into carbides is effective to minish the grain size of WC/Co powder. The La doped carbides powder with grain size of 30nm can be obtained after 10h ball milling. The XRD peak of Co phase disappeared after 20h ball milling, which indicated solid solution (or secondary solid solution) of Co phase in WC phase. The La doped powder with grain size of 10nm is obtained after 30h ball milling. A peak of heat release at the temperature of 470℃ was emerged in DTA curve within the range of heating temperature, which showed that the crystal structure relaxation of the powder appeared in the process of high energy ball milling. After consolidated the La doped WC/Co alloy by high energy ball milling exhibits  相似文献   

12.
This is Part III of a 3 part series on the Mechanics of the Grinding Process. Part I deals with the stochastic nature of the grinding process, Part II deals with the thermal analysis of the fine grinding process and this paper (Part III) deals with the thermal analysis of the cut-off operation. Heat generated in the abrasive cut-off operation can affect the life of resin bonded grinding wheels and cause thermal damage to the workpiece. Thermal analysis of the abrasive cut-off operation can, therefore, provide guidelines for proper selection of the grinding conditions and optimization of the process parameters for improved wheel life and minimal thermal damage to the workpiece. In this investigation, a new thermal model of the abrasive cut-off operation is presented based on statistical distribution of the abrasive grains on the surface of the wheel. Both cutting and ploughing/rubbing that take place between the abrasive grains and the work material are considered, depending on the depth of indentation of the abrasives into the work material. In contrast to the previous models, where the apparent contact area between the wheel and the workpiece was taken as the heat source, this model considers the real area of contact, namely, the cumulative area of actual contacting grains present at the interface as the heat source. It may be noted that this is only a small fraction of the total contact area as only a small percentage of the abrasive grains present on the surface of the cut-off wheel are in actual contact with the workpiece at any given time and even a smaller fraction of them are actual cutting grains taking part in the cut-off operation. Since, the Peclet number, NPe in the case of cut-off grinding is rather high (a few hundred), the heat flow between the work and the contacting abrasive grains can be considered to be nearly one-dimensional. In this paper, we consider the interaction between an abrasive grain and the workpiece at the contact interface. Consequently, the heat source relative to the grain is stationary and relative to the workpiece is fast moving. The interface heat source on the grain side as well as on the workpiece side is equivalent to an infinitely large plane heat source with the same heat liberation intensity as the circular disc heat source. However, it will be shown in the paper that the contacting times are different. For example, the abrasive grain contacts the heat source, as it moves over the wheel-work interface, for a longer period of time ( milliseconds) whereas the workpiece contacts the heat source for shorter period of time ( a few microseconds). The temperature in the grinding zone is taken as the sum of the background temperature due to the distributed action of the previous active grains operating in the grinding zone (global thermal analysis) and the localized temperature spikes experienced at the current abrasive grain tip-workpiece interfaces (local thermal analysis), similar to the work reported in the literature [Proc Roy Soc (London) A 453 (1997) 1083]. The equivalent thermal model developed in the present investigation is simple and represents the process more realistically, especially the heat partition. The model developed provides a better appreciation of the cut-off operation; a realistic estimation of the heat partition between the wheel, the workpiece, and the chip; thermal gradients in the workpiece due to abrasive cut-off operation, and an insight into the wear of the cut-off wheels.  相似文献   

13.
The process of production and working environment of heat exchangers call for materials with good elevated temperature properties. However, the previous investigations were mainly focused on their room temperature properties. The relationship between microalloying and high temperature properties, especially creep properties of Al-Mn-based alloys are barely discussed. In order to improve the industrial applications of Al-Mn-based alloys, the effect of Mg, Ni and Zr additions and annealing process on the microstructure and high temperature properties of Al-Mn-based alloys were studied in this work. The investigated alloys were treated in two ways, first one is cold-rolling and heat treatment at 873 K for 10 min, and the second one is cold-rolling, heat treatment at 623 K for 1 h and 873 K for 10 min. The results indicate that annealing process has remarkable effect on the grain shape, fine equiaxed crystal grains are obtained in the former, while stable elongated grains are obtained for precipitation precedes recrystallization at 623 K in the latter. With Mg addition, more AlMnSi phase precipitated during annealing. The addition of Zr and Ni increases the type and amount of heat resistant compounds, precipitate Al3Zr and AlMnSiNi, which are beneficial to improving high temperature properties of Al-Mn alloy. Al-Mn-0.3Mg-0.2Ni alloy has the best elevated temperature properties, and the tensile strength of it is 102 MPa (50 MPa higher than Al-Mn alloy) at 523 K. And the steady-creep rate is strongly decreased to 3.93x10(-8) s(-1), two orders of magnitude smaller than Al-Mn alloy at the temperature of 523 K under the stress of 40 MPa. With dispersoids complicated or increased, the movement of dislocations are pinned strongly, which are contribute to improving the creep properties of Al-Mn alloy for the creep is mainly controlled by dislocation climb.  相似文献   

14.
宋帆  方顺发  袁达  丁丽锋 《热处理》2010,25(2):54-59
试验研究了影响X20Cr13叶片铜力学性能的相关热处理工艺参数。试验结果表明,若淬火温度偏高,晶粒易粗化,导致冲击性能降低较多。该钢有明显的回火脆性,因此回火冷却速度应稍快,回火时间应充分。该钢风冷淬火也能获得良好的综合力学性能。  相似文献   

15.
The possibility of providing TiC–Al2O3 nanocomposite as a useful composite from low-cost raw materials has been investigated. Impure Ti chips were placed in a high energy ball mill with carbon black and aluminum powder and sampled after different times. XRD analysis showed that TiC has been synthesized after 10 h of milling. It could be observed from the width of XRD patterns’ peaks that the size of produced TiC crystallites is in the order of nanometer. In order to forming of TiC–Al2O3 composite, heat treatment was performed in different temperatures. Investigations have revealed that formation temperature of TiC as the dominant phase decreased for the milled specimens during heat treatment, also nanocrystalline TiC–Al2O3 composite was formed in this situation. Furthermore milling led to increase of strain and decrease of TiC lattice parameter while during heat treatment nanocrystalline grains grow up and strain decreases.  相似文献   

16.
斜轧管材生产中内部组织有限元模拟和预测   总被引:1,自引:0,他引:1  
金属的强度、韧性及焊接等性能取决于内部组织的晶粒大小及其排列情况. 应用热力耦合有限元模型计算了其应力、应变和温度等参数在斜轧穿孔中的分布状态, 进一步应用再结晶与有限元结合的数学模型对该过程内部晶粒进行了预测. 通过室温条件下的理论与实测比较, 认为该预测方法是可靠的、且具有一定的精度. 应用这种方法可以对斜轧工艺参数进行调整, 使其具有良好的内部质量. 不仅可为后续工序提供高质量的管坯, 而且可以减少不必要的工序.  相似文献   

17.
利用洛氏硬度计及场发射扫描电镜等研究了奥氏体化温度和回火温度对热锻模具用钢5Cr5Mo2V组织和性能的影响.结果表明:试验钢经过不同温度的淬火和回火处理后,组织均为回火马氏体+残留奥氏体+碳化物.当5Cr5Mo2V钢在920~1030℃淬火时,随淬火温度升高硬度值增加并于1030℃达到最大值62.53 HRC,之后硬度...  相似文献   

18.
32Cr2MoV钢循环热处理特性的研究   总被引:1,自引:0,他引:1  
研究了循环淬火工艺对32Cr2MoV钢力学性能的影响。结果表明,试样经2~3次循环淬火后,能够得到均匀细小的晶粒,获得优于常规处理的高强度、高韧性和高塑性。与常规工艺相比,循环淬火工艺具有热处理周期短、生产率高、耗能少等优点。  相似文献   

19.
针对X80级高强管线钢纵向焊缝三电极串列三丝埋弧焊,借助ANSYS有限元分析软件,采用生死单元技术处理双V形坡口填充,利用双椭球体积热源分布模式实现载荷的施加与求解,建立焊接热过程数值分析模型.计算结果表明,焊接开始后1.6 s时出现三电极共熔池现象,到5 s时焊接过程达到准稳态,形成长度逾100 mm的熔池;焊缝区和HAZ的焊接热循环曲线出现三个高温波峰,延长了热循环曲线的高温停留时间,是HAZ晶粒粗化和焊接接头性能劣化的主要诱因.焊接工艺试验与数值计算结果对比表明,熔宽比熔深吻合更加良好,考虑焊缝余高可进一步提高计算精度.  相似文献   

20.
金属注射成形17-4PH不锈钢脱脂保形性研究   总被引:2,自引:0,他引:2  
研究了粘结剂配方,粉末装载量,喂料热力学性质,注射成形工艺等多个因素对金属注射成形17-PH不锈钢脱脂保形性的影响。结果表明具有较高热分解温度,较低熔解热的HDPE作为第2组元的蜡基粘结剂,具有比采用EVA为第2组元的粘结剂更好的保形性能。试样变形率随着粉末装载量,注射压力,注射温度的增加而下降,而且存在一最佳的工艺条件,包括粉末装载量,注射压力,注射温度,此时试样最不容易变形,试样变形比例最小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号