首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The additive composition of an AlN ceramic substrate material was optimized to achieve high strength and thermal conductivity. MgO-CaO-Al2O3-SiO2 (MCAS) glass and Y2O3 were used as basic additives for improved sintering properties and thermal conductivity, thereby allowing for AlN to be sintered at a relatively low temperature of 1600 °C without pressurization. Yttria-stabilized zirconia (YSZ) was added (0–3 wt%) to further improve the strength of the AlN ceramic. YSZ and Y2O3 reacted with AlN to produce ZrN, Y4Al2O9, and Y3Al5O12 secondary phases. The formation of these yttrium aluminate phases improved the thermal conductivity by removing oxygen impurities, while ZrN formed at the AlN grain boundaries provided resistance to grain boundary fractures for improved strength. Overall, the AlN ceramic with 1 wt% MCAS, 3 wt% Y2O3, and 1 wt% YSZ exhibited excellent thermal and mechanical properties, including a thermal conductivity of 109 W/mK and flexural strength of 608 MPa.  相似文献   

2.
The effect of extended annealing cycles (up to 50 h at 1800°C) on the thermal conductivity of polycrystalline AlN, doped with 5 wt% Y2O3, has been studied. The microstructural evolution upon annealing has also been characterized in detail, using quantitative scanning electron microscopy (SEM) observation and energy dispersive X-ray analysis (EDX). As-sintered AlN/Y2O3 composites typically contained a dilute yttrium aluminate secondary phase well distributed and completely wetting the AlN grains. Upon annealing, the AlN matrix grains isotropically grew, while the grain-boundary yttrium aluminate phase tended to segregate to triple grain junctions. This segregation process produced a collapse of the grain-boundary film thickness, thus resulting in a completely different AlN microstructure dispersed with isolated yttrium aluminate grains. Equilibrium of the microstructural morphology was achieved after annealing times in the interval 5–10 h. As a consequence of microstructural changes, the thermal conductivity of the annealed AlN polycrystal exceeded that of the as-sintered material. A discussion is given about the variation of thermal properties in terms of both segregation to the triple-grain junctions of the intergranular Y2O3-phase and grain-growth of the bulk AlN grains.  相似文献   

3.
《Ceramics International》2023,49(20):32929-32935
The effect of yttrium fluoride (YF3) on the densification behavior, microstructure, phase composition and thermal conductivity of aluminium nitride (AlN) ceramics with yttrium oxide (Y2O3) and YF3 additives were studied. Since YF3 provided liquid phases and promoted densification at a lower temperature, the sintering temperature required to reach the full density of AlN samples decreased with the increase in YF3 content. Appropriate addition of YF3 could improve the thermal conductivity of AlN ceramics, but the values of thermal conductivity decreased as YF3 increased further. It is attributed to the ability of YF3 to react with oxygen impurity was worse than that of Y2O3. Moreover, the reducing atmosphere significantly affected the phase composition, and the oxygen content in grain boundary phases decreased at 1750 °C and 1800 °C. Therefore, the proper proportion of Y2O3–YF3 additives could simultaneously improve densification and the thermal conductivity of AlN samples at a low sintering temperature.  相似文献   

4.
A uniform dispersion of sintering additives is crucial to improve the thermal and mechanical properties of AlN ceramics. In this study, the Y2O3-coated AlN composite powder was successfully prepared by the chemical precipitation (CP) process, thereby improving the homogenization of Y2O3 in AlN green compacts. The precipitation coating behavior of Y2O3 precursor was investigated by FTIR and TG-DSC, and the corresponding reaction equation was proposed. The results of TEM, XRD, and XPS for the CP processed AlN powder indicated that a uniform amorphous Y2O3 layer was fully wrapped on the surface of AlN powder. The microstructures and phases of the sintered AlN samples prepared via the CP and conventional ball-milling (BM) processes, respectively, were compared. The CP process can result in decreasing oxygen content in AlN grains, facilitating the formation of the desirable isolated second phases, and strengthening the grain and grain boundary of AlN ceramic. As a result, the thermal conductivity, bending strength and fracture toughness of the CP processed AlN ceramic are 9.43%, 10.56%, and 18.50% higher than those of the BM processed sample, respectively, illustrating the CP process is a pretty effective way to simultaneously improve the thermal and mechanical properties of AlN ceramics.  相似文献   

5.
《Ceramics International》2023,49(15):24948-24959
Aluminum nitride ceramics were prepared by aqueous gelcasting method and pressureless sintering technique in N2 atmosphere using Y2O3 as sintering additives with nontoxic curdlan as gel system. The solidification mechanism of curdlan was studied. The effects of curdlan content and solid content on the microstructure, relative density and flexural strength of green bodies were investigated. The influences of Y2O3 content and sintering soaking time on the microstructure and properties of sintered bodies were also studied. The results show that, as the temperature increases to 80 °C, the ceramic powders solidify through three-dimensional gel networks of curdlan during gelling process. The green bodies can be successfully fabricated through aqueous gelcasting method with modified powder as original materials. Suitable curdlan content and solid content contribute to fabricating green body with uniform microstructures and high flexural strength. The relative density and flexural strength of sintered bodies enhance as the Y2O3 content and soaking time increase. The flexural strength and thermal conductivity are about 107.5∼172.3 MPa and 75.2∼112.5 W/(m·K), respectively. The sintered body with 4 wt% Y2O3 soaking for 3 h exhibits the highest thermal conductivity because of appropriate relative density, uniform microstructure and reasonable intergranular phase distribution. The mechanical property and thermal conductivity of sintered bodies can be improved by optimizing the gelcasting process parameter, Y2O3 content, and soaking time. The nontoxic gelling system will have wide application for aqueous gelcasting ceramic with complex shape.  相似文献   

6.
Open-celled aluminum nitride ceramic foams were prepared by the polymer sponge replication technique involving aqueous dispersions of passivated AlN. The amount of the Y2O3 and Dy2O3 as sintering aid was varied, and the effects on the densification, microstructure formation, phase composition, and finally, the thermal conductivity were investigated. A typical thermal conductivity of 1.1 W m−1 K−1 was determined for foams at a porosity level of 94.3 vol.%, on average. This measured foam thermal conductivity was subsequently modeled using different porosity ↔ thermal conductivity relations considering the different hierarchical levels of porosity in these foams. From these models, the thermal conductivity of the bulk AlN strut material was determined, correlated with the strut microstructure and the phase composition, and compared to literature data.  相似文献   

7.
AlN green bodies with variable O and C contents were employed to fabricate Y2O3-doped AlN ceramics of different grain-boundary phase compositions and microstructures via debinding in air and N2, respectively. The microstructural evolution and grain-boundary oxide migration and their effects on the properties of the ceramics were explained. Finally, modified models were built to predict the thermal conductivity of these AlN ceramics with complex microstructures. During sintering, the oxide melt migrates to the ceramic surface driven by the differences between the surface energy and solid/liquid interface energy of the melt. The phase compositions and distributions of the grain-boundary oxides vary with sintering temperature. In addition, the amorphous layers were detected experimentally. All of these factors have great effects on ceramics properties. AlN ceramics were shown to have a thermal conductivity as high as 221.64 W/(m·K), which agrees with the value predicted via modified models.  相似文献   

8.
Si3N4 ceramics were sintered at 1900 °C under a nitrogen pressure of 1 MPa using Y2O3-MgO additives. The effects of Y2O3 content (0.5-4 mol%) on microstructure and thermal conductivity were systematically investigated. The increasing Y2O3 content led to increases in amount and viscosity of liquid phase during sintering, which induced a “bimodal to normal” transition in distribution of grain size, decreased Si3N4/Si3N4 contiguity and enhanced devitrification degree of intergranular phase in sintered bulks. Moreover, the decreasing Y2O3 content was found to improve the elimination efficiency of SiO2 impurity during sintering, resulting in lower lattice oxygen content in densified specimens. The microstructure had a strong effect on thermal conductivity. The samples sintered for 3 h gained an increase of thermal conductivity from 65 to 73 W·m-1 K-1 with increasing Y2O3 content, while the samples sintered for 12 h obtained a substantial increase of thermal conductivity from 87 to 132 W·m-1 K-1 with decreasing Y2O3 content.  相似文献   

9.
AlN ceramics were sintered at a temperature range from 1650 to 1800°C through adding the Ca and Y nitrate sintering additives. Secondary phases, microstructures and properties of the AlN ceramics were studied. When the AlN ceramics are sintered at 1650 or 1675°C, CaO and Y2O3 from the sintering additives react with Al2O3 in the AlN powder to generate CaAl4O7 and Y3Al5O12. Part of Y3Al5O12 reacts with CaO and Al2O3 to form CaYAl3O7 at 1700°C. At 1800°C, CaYAl3O7 decomposes into CaAl4O7 and Y3Al5O12. Finally, CaAl4O7 volatilises and only Y3Al5O12 remains. As the sintering temperature increases, the AlN grains grow continuously and the bending strength and thermal conductivity of the AlN ceramics increase first and then decrease. The AlN ceramics sintered at 1700°C are fully dense and have the highest bending strength and thermal conductivity of 373·7 MPa and 136·7 W m?1 K?1 in this work.  相似文献   

10.
《Ceramics International》2022,48(18):26022-26027
Aluminum nitride (AlN) is used a ceramic heater material for the semiconductor industry. Because extremely high temperatures are required to achieve dense AlN components, sintering aids such as Y2O3 are typically added to reduce the sintering temperature and time. To further reduce the sintering temperature, in this study, a low-melting-temperature glass (MgO–CaO–Al2O3–SiO2; MCAS) was used as a sintering additive for AlN. With MCAS addition, fully dense AlN was obtained by hot-press sintering at 1500 °C for 3 h at 30 MPa. The mechanical properties, thermal conductivity, and volume resistance of the sintered AlN–MCAS sample were evaluated and compared with those of a reference sample (AlN prepared with 5 wt% Y2O3 sintering aid sintered at 1750 °C for 8 h at 10 MPa). The thermal conductivity of AlN prepared with 0.5 wt% MCAS was 91.2 W/m?K, which was 84.8 W/m?K lower than that of the reference sample at 25 °C; however, the difference in thermal conductivity between the samples was only 14.2 W/m?K at the ceramic-heater operating temperature of 500 °C. The flexural strength of AlN–MCAS was 550 MPa, which was higher than that of the reference sample (425 MPa); this was attributed to the smaller grain size achieved by low-temperature sintering. The volume resistance of AlN–MCAS was lower than that of the reference sample in the range of 200–400 °C. However, the resistivity of the proposed AlN–MCAS sample was higher than that of the reference sample (500 °C) owing to grain-boundary scattering of phonons. In summary, the proposed sintering strategy produces AlN materials for heater applications with low production cost, while achieving the properties required by the semiconductor industry.  相似文献   

11.
《Ceramics International》2019,45(10):12757-12763
Dense silicon nitride (Si3N4) ceramics were prepared using Y2O3 and MgF2 as sintering aids by spark plasma sintering (SPS) at 1650 °C for 5 min and post-sintering annealing at 1900 °C for 4 h. Effects of MgF2 contents on densification, phase transformation, microstructure, mechanical properties, and thermal conductivity of the Si3N4 ceramics before and after heat treatment were investigated. Results indicated that the initial temperature of liquid phase was effectively decreased, whereas phase transformation was improved as increasing the content of MgF2. For optimized mechanical properties and thermal conductivity of Si3N4, optimum value for MgF2 content existed. Sample with 3 mol.% Y2O3 and 2 mol.% MgF2 obtained optimum flexural strength, fracture toughness and thermal conductivity (857 MPa, 7.4 MPa m1/2 and 76 W m−1 K1, respectively). It was observed that excessive MgF2 reduced the performance of the ceramic, which was caused by the presence of excessive volatiles.  相似文献   

12.
《Ceramics International》2023,49(12):20034-20040
In order to reveal the effect of Sc2O3 and Y2O3 co-doping system on the thermal shock resistance of ZrO2 thermal barrier coatings, Y2O3 stabilized ZrO2 thermal barrier coatings (YSZ TBCs) and Sc2O3–Y2O3 co-stabilized ZrO2 thermal barrier coatings (ScYSZ TBCs) were prepared by atmospheric plasma spraying technology. The surface and cross-section micromorphologies of YSZ ceramic coating and ScYSZ ceramic coatings were compared, and their phase composition before and after heat treatment at 1200 °C was analyzed. Whereupon, the thermal shock experiment of the two TBCs at 1100 °C was carried out. The results show that the micromorphologies of YSZ ceramic coating and ScYSZ ceramic coating were not much different, but the porosity of the latter was slightly higher. Before heat treatment, the phase composition of both YSZ ceramic coating and ScYSZ ceramic coating was a single T′ phase. After heat treatment, the phase composition of YSZ ceramic coating was a mixture of M phase, T phase, and C phase, while that of ScYSZ ceramic coating was still a single T′ phase, indicating ScYSZ ceramic coating had better T′ phase stability, which could be attributed to the co-doping system of Sc2O3 and Y2O3 facilitated the formation of defect clusters. In the thermal shock experiment, the thermal shock life of YSZ TBCs was 310 times, while that of ScYSZ TBCs was 370 times, indicating the latter had better thermal shock resistance. The difference in thermal shock resistance could be attributed to the different sintering resistance of ceramic coatings and the different growth rates of thermally grown oxide in the two TBCs. Furthermore, the thermal shock failure modes of YSZ TBCs and ScYSZ TBCs were different, the former was delamination, while the latter was delamination and shallow spallation.  相似文献   

13.
Aluminum nitride/boron nitride (AlN/BN) ceramics with 15–30 vol.% BN as secondary phase were fabricated by spark plasma sintering (SPS), using Yttrium oxide (Y2O3) as sintering aid. Effects of Y2O3 content and the SPS temperature on the density, phase composition, microstructure and thermal conductivity of the ceramics were investigated. The results revealed that with increasing the amount of starting Y2O3 in AlN/BN, Yttrium-contained compounds were significantly removed after SPS process, which caused decreasing of the residual grain boundary phase in the sintered samples. As a result, thermal conductivity of AlN/BN ceramics was remarkably improved. By addition of Y2O3 content from 3 wt.% to 8 wt.% into AlN/15 vol.% BN ceramics, the thermal conductivity increased from 110 W/m K to 141 W/m K.  相似文献   

14.
The impulse excitation technique (IET) and high temperature X-ray diffraction (HTXRD) were used to investigate the intergranular glass phase and its crystallisation behaviour in four hot-pressed silicon nitrides. The internal friction or damping peak height measured with IET near the glass transition temperature, Tg, is used as a qualitative indicator for the amount of residual intergranular amorphous phase after sintering. Silicon nitride powder was hot-pressed with different sintering additives. The silicon nitride containing 4 wt.% Al2O3 does not reveal an internal friction peak at Tg, i.e. it does not contain a significant amount of intergranular glass phase. Three other silicon nitrides, containing either 8 wt.% Y2O3, 6 wt.% Y2O3+2 wt.% Al2O3, or 2 wt.% Y2O3+4 wt.% Al2O3+2 wt.% TiN, do show an internal friction peak near Tg. This “Tg-peak” is nearly unaffected by heating up to 1400 °C in the silicon nitride with Y2O3+Al2O3+TiN sintering aids, whereas the amount of intergranular glass in the ceramics containing either Y2O3+Al2O3 or Y2O3 as a sintering aid is strongly reduced by subsequent heating. As observed from HTXRD, the onset temperature of crystallisation of the intergranular glass in the ceramic containing Y2O3+Al2O3 sintering aids is about 1100 °C, with the formation of Y–N-apatite (Y20N4Si12O48) and O-sialon (Al0.04Si1.96N1.96O1.04). The O-sialon phase in the yttria and alumina containing ceramics, formed either during sintering or during heat treatment, is not stable at elevated temperatures and dissolves in the intergranular glass phase between 1300 and 1400 °C. The O-sialon phase in the ceramic without Y2O3 sintering additive, however, is thermally stable. The presence of Ti4+ ions in the intergranular glass phase is suggested to inhibit its crystallisation, resulting in a stable high temperature damping behaviour.  相似文献   

15.
Si3N4 ceramic was densified at 1900°C for 12 hours under 1 MPa nitrogen pressure, using MgO and self‐synthesized Y2Si4N6C as sintering aids. The microstructures and thermal conductivity of as‐sintered bulk were systematically investigated, in comparison to the counterpart doped with Y2O3‐MgO additives. Y2Si4N6C addition induced a higher nitrogen/oxygen atomic ratio in the secondary phase by introducing nitrogen and promoting the elimination of SiO2, resulting in enlarged grains, reduced lattice oxygen content, increased Si3N4‐Si3N4 contiguity and more crystallized intergranular phase in the densified Si3N4 specimen. Consequently, the substitution of Y2O3 by Y2Si4N6C led to a great increase in ~30.4% in thermal conductivity from 92 to 120 W m?1 K?1 for Si3N4 ceramic.  相似文献   

16.
A series of Y2O3-doped HfO2 ceramics (Hf1-xYxO2-0.5×, x?=?0, 0.04, 0.08, 0.12, 0.16 and 0.2) were synthesized by solid-state reaction at 1600?°C. The microstructure, thermophysical properties and phase stability were investigated. Hf1-xYxO2–0.5x ceramics were comprised of monoclinic (M) phase and cubic (C) phase when Y3+ ion concentration ranged from 0.04 to 0.16. The thermal conductivity of Hf1-xYxO2–0.5x ceramic decreased as Y3+ ion concentration increased and Hf0.8Y0.2O1.9 ceramic revealed the lowest thermal conductivity of ~?1.8?W/m*K at 1200?°C. The average thermal expansion coefficient (TEC) of Hf1-xYxO2–0.5x between 200?°C and 1300?°C increased with the Y3+ ion concentration. Hf0.8Y0.2O1.9 yielded the highest TEC of ~?10.4?×?10?6 K?1 while keeping good phase stability between room temperature and 1600?°C.  相似文献   

17.
A model system consisting of coarse SiC (32–160 μm) as starting powder and Y2O3 and AlN as sintering additives was liquid phase sintered. Coarse-grained starting powder led to large intergranular phase regions which allowed an accurate determination of the chemical composition by wavelength-dispersive X-ray microanalysis (WDS). When N2 was used as sintering atmosphere, a N-rich amorphous phase (about 44 at.% N) was identified by WDS to be the main triple-junction phase in the sintered SiC ceramics, while three further crystalline intergranular phases were AlN, Y2SiN4O3 and an O-rich phase (Y10Al2Si3O18N4). The overall O content was found to be reduced in comparison to the initial powder composition. The incorporation of N from the sintering atmosphere into the intergranular phase and a subsequent carbothermal reduction are believed to be responsible for the removal of O and the formation of the N-rich amorphous phase.  相似文献   

18.
Aluminum nitride (AlN) is a promising material for electronic substrates and heat sinks. However, AlN powders react with water that adversely affects final part properties and necessitates processing in organic solvents, increasing the cost of AlN parts. Small quantities of yttrium oxide (Y2O3) are commonly added to AlN particles to enable liquid phase sintering. To mitigate the reaction of AlN particles with water, particle atomic layer deposition (ALD) was used to coat AlN powders with conformal films of Y2O3 prior to densification and powder processing. When AlN particles were coated with 6 nm thick films of amorphous Y2O3, the hydrolysis reaction was significantly suppressed over 48 h, demonstrating that Y2O3 nanofilms on AlN powders act as a barrier coating in an aqueous solution. AlN powders with Y2O3 addition by particle ALD sintered to high relative densities (≥90% theoretical) after sintering at 1800°C for 50 min.  相似文献   

19.
Metallic copper, which has low electrical resistivity and high thermal conductivity, is widely used as an interconnector or substrate within microelectronic packages. If a small amount of oxygen is introduced to the surface of the copper, a eutectic liquid forms above 1065 °C. The eutectic liquid wets many ceramics well; it is thus possible to bond slightly oxidized copper to many ceramics directly. The present report summarizes previous results on three systems, Al2O3/Cu, AlN/Cu, and Si3N4/Cu laminates, prepared by the eutectic bonding process. The reported data demonstrate that ceramic/copper interfaces prepared with this technique are strong. Though little attention has been paid to the thermal characteristics of ceramic/copper laminates, the limited data suggest that the thermal conductivity of the laminates is high, the potential for using the laminates for thermal dissipation is thus high. In the present report, the current status for the technique is summarized; critical topics for further improvement are also proposed.  相似文献   

20.
《Ceramics International》2022,48(12):16619-16629
For the miniaturization of high-power electronic components, AlN/Al is a promising metallized ceramic substrate due to its superior mechanical and thermal performances. Numerous bonding processes have been proposed for fabricating the metallized ceramic substrate. Unfortunately, the influences of various bonding techniques on the mechanical performance of AlN/Al metallized ceramic substrate remain undetermined to date. The objective of this study was thus to investigate the effects of the transient liquid phase (TLP) technique and pre-oxidation treatment on the bonding, microstructure, and mechanical strength of the AlN/Al metallized ceramic substrate.The results indicated that the three-layered AlN/Al/AlN specimen could be effectively bonded by the TLP process and pre-oxidation treatment. However, the bending strengths of the specimens fabricated by the two techniques were obviously divergent. The bending strength of raw AlN substrate was 333 MPa. In contrast, the bending strengths of the three-layered specimens with AlN substrates pre-oxidized at 1050 °C, 1150 °C, and 1250 °C were 292 MPa, 250 MPa, and 224 MPa, respectively. Raising the pre-oxidation temperature of the AlN substrate from 1050 °C to 1250 °C obviously increased the thickness of the Al2O3 layer and deteriorated the bending strength, for the fracture propagated along the Al2O3 layer and the Al2O3/AlN interface. For the TLP bonding, the Cu film deposited on the AlN substrate contributed to the generation of Al–Cu transient liquid and to bonding. The bending strength of the three-layered specimens fabricated by TLP at 650 °C was 417 MPa, which was 25% and 43% better than those of the raw AlN substrate and the three-layered specimens prepared by the pre-oxidation treatment, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号