首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of Hydroxyapatite (HAP)/Titania (TiO2) composite coatings on metallic implants have received a great deal of attention during the recent years owing to their superior advantages in biomedical applications. The present study has focused on the in situ formation of HAP/TiO2 composite powders through aqueous precipitation technique. Five different HAP/TiO2 composite powders of varied HAP to TiO2 ratios has been synthesized in the present study and the results were compared with the stoichiometric HAP, Rutile TiO2 and Anatase TiO2 which also have been synthesized by adapting a similar synthetic procedure. All the synthesized powders have been analyzed using X-ray diffraction (XRD) and X-ray fluorescence (XRF) techniques. Rietveld Refinement technique has been employed to generate quantitative information about the structural characteristics and phase content in all the powder samples. Further, the electrophoretic deposition (EPD) method has been employed to fabricate HAP/TiO2 composite coatings on 316 L SS and the resultant coatings were analyzed for its quantitative structural characteristics. The results from the present investigation has confirmed that concentration of TiO2 in the HAP/TiO2 composites and heat treatment temperatures have played a major role in the degradation of HAP to β-Tricalcium phosphate and also in the conversion of Anatase to Rutile TiO2 phase.  相似文献   

2.
Composite coatings based on lignin, obtained by electrophoretic deposition (EPD) on titanium, were investigated. The aim of this work was to produce hydroxyapatite/lignin (HAP/Lig) coatings on titanium and to investigate the effect of the lignin concentration on microstructure, morphology, phase composition, thermal behavior and cytotoxicity of the HAP/Lig coatings. An organosolv lignin was used for the production of the composite coatings studied in this research. The properties of HAP/Lig coatings were characterized using X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FT-IR) and X-ray photoelectron spectroscopy (XPS), as well as the MTT test of cytotoxicity. The results showed that higher lignin concentrations protected the HAP lattice during sintering, thereby improving the stability of the HAP/Lig coatings. The cell survival of peripheral blood mononuclear cells (PBMC) after proliferation indicates that the HAP/Lig coating with 1 wt% Lig electrodeposited on titanium was non-toxic with significant promise as a potential bone-repair material.  相似文献   

3.
电泳沉积羟基磷灰石生物陶瓷涂层的研究进展   总被引:10,自引:4,他引:10  
羟基磷灰石(hydroxyapatite,HAP)生物陶瓷涂层被认为是目前最好的用于替代人体硬组织的一种生物医用材料。电泳沉积是一种全新的涂层制备方法,它可以解决传统HAP生物陶瓷涂层制备工艺上的各种不足。文中综合介绍了国内外有关电泳沉积HAP生物陶瓷涂层的研究报道,概述了电泳沉积的工艺流程和工艺参数,并对各种影响因素全面地进行了详细的探讨,进而提出了相应的设想和展望。  相似文献   

4.
Surgical grade stainless steel (316L SS) is a widely used implant material in orthopedic surgeries. However, the release of metallic ions evidenced from the 316L SS implants in vivo conditions is a big challenge. In order to minimize the release of metallic ions, coating the 316L SS implant with a biocompatible material like hydroxyapatite [HAP, Ca10(PO4)6(OH)2] is one of the suitable methods. In this paper, the hydroxyapatite coating on borate passivated through poly-ortho-phenylenediamine (PoPD)-coated 316L SS by a dip coating method has been reported. The coatings were characterized by electrochemical techniques such as potentiodynamic polarization, electrochemical impedance spectroscopy, and cyclic voltammetry. Surface characterization studies of the coatings such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were also carried out. The leach out characteristics of the coatings was determined at the impressed potential. The mechanical property of the coatings was evaluated by Vicker’s microhardness test. The Cr-rich passive film formed underneath the PoPD layer showed a higher protective efficiency. The ability to form apatite on the post-passivated PoPD-coated 316L SS specimen was examined by immersing it in the simulated body fluid. The enhanced corrosion resistivity of the HAP coating on the post-passivated PoPD-coated 316L SS was due to an effective barrier of PoPD followed by the passive film underneath the PoPD.  相似文献   

5.
《Ceramics International》2022,48(22):33256-33266
The coating of hydroxyapatite (HAP) on the surface of bio-inert metallic implants to augment their bioactivity is in use for the last two decades. Substitution of various materials in HAP further improves the functionality of these coatings. We demonstrate coating of Ti6Al4V alloy sheets with strontium and niobium reinforced HAP using microwave (MW) irradiation technique. Physical characterization revealed, uniform semicrystalline hydroxyapatite coating with enhanced surface roughness and microhardness. The increased surface roughness was accompanied by higher wettability and more protein adsorption. Electrochemical corrosion assessment showed a dramatic increase in corrosion potential and a noticeable decline in corrosion current density suggesting an enhanced anticorrosive behaviour. These implants also exhibited improved hemocompatibility and bacteriostatic properties. Cell viability and confocal microscopy studies of the coated samples showed enhanced cell attachment on the surface. We propose microwave irradiation as a fast and hassle-free alternative for one-pot synthesis and deposition of ionic substituted HAP on metallic implants.  相似文献   

6.
《Ceramics International》2015,41(7):8878-8884
In this study, a biomimetic method was used to prepare hydroxyapatite (HAP) and zinc substituted HAP (ZnHAP) nanoparticles, in which silk fibroin was used as template. The morphology of HAP is rod-like, while ZnHAP changes to wrinkled sheets. HAP and ZnHAP nanoparticles were used to coat titanium by EPD with additional chitosan and multiwalled carbon nanotubes. Phase composition, morphology and structure were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared and Raman spectroscopy. The results showed that the composite coatings containing HAP and ZnHAP had homogeneous morphology and good apatite formation ability. The ZnHAP composite coating possessed class 5B adhesive strength using tape test. Furthermore, the ZnHAP composite coating had better corrosion resistance compared to the HAP composite coatings.  相似文献   

7.
在无磁场及强度均为0.4 T的平行磁场和垂直磁场诱导下,采用仿生矿化法在AZ91D镁合金表面制备羟基磷灰石(HAP)涂层。采用扫描电镜、X射线衍射仪和测厚仪分析了HAP涂层的表面形貌、物相成分、晶体取向和厚度。结果表明,在垂直磁场条件下制备的HAP涂层最均匀、致密,晶体为a、b轴取向。  相似文献   

8.
Present research studies the deposition of electrical conductive coatings on aluminium matrix composites that have 75 vol% of SiC particles (AlSiC composites) to be used for electronics packaging. Ni(P)–Au multilayer coatings were produced by electroless plating, and continuous and well adhered coatings have been developed. Coatings were characterised using microstructural and micromechanical techniques (microhardness and nanoindentation). Corrosion tests in aggressive environments were also applied to analyse the durability of the coatings under extreme service conditions.  相似文献   

9.
Inorganic coatings are being developed to protect marble monuments and sculpture from weathering. In this work, the acid resistance of hydroxyapatite (HAP), calcium oxalate, and calcium tartrate coatings on Carrara marble were compared. To quantify the rate of attack on calcite, the pH of the solution was measured. This approach was validated by confirming that the rate of dissolution of untreated calcite inferred from the change in pH agrees with data in the literature. Calcium tartrate coatings were incomplete, and the mineral is so soluble that it offered no significant protection. Calcium oxalate forms coherent coatings, so it serves as a sacrificial coating in spite of having solubility comparable to that of calcite. HAP was deposited from aqueous solutions of 1M diammonium hydrogen phosphate (DAP), with or without millimolar additions of CaCl2 (which improved coverage) and (NH4)2CO3 (which resulted in cracking). The best HAP coatings remained porous; nevertheless, they were comparable to oxalate coatings in the short term and superior in the long term, reducing the dissolution rate by about 40%.  相似文献   

10.
The current work focused on the development of hydroxyapatite (HAP) coating on laser textured metallic implants using electrophoretic deposition. HAP was synthesized by sol-gel technique and its phase purity and surface morphology were confirmed by FT-IR, XRD and SEM analysis. 316 L SS and Ti-6Al-4V metal implants were polished and the surface was modified using Nd-YAG laser operating at a pulse interval of 10 ns at various overlapping rate of 0%, 25% and 50%. The laser treated surface was characterized for its surface roughness using surface profilometry and surface morphology. The surface roughness of the metallic implants was increased by increase in the overlapping rate. The prepared HAP powder was electrophoretically deposited on bare and laser textured Ti-6Al-4V and 316 L stainless steel followed by vacuum sintering at 300 °C for 2 h. Scratch analysis results showed an improvement in adhesion strength for the HAP coatings on laser treated specimens than untreated metal. Corrosion efficiency of the coated samples was studied in SBF solution using EIS and potentiodynamic polarization studies. The result from the corrosion experiments proved increased corrosion resistance property of laser textured coated samples when compared to bare alloy due to higher adhesion of HAP coating on the metal surface.  相似文献   

11.
This article deals with the understanding of building-up mechanisms of bioactive nanocrystalline hydroxyapatite coatings by Cold Spray, revealing very promising results in contrast to more conventional techniques such as Plasma Spray. A full characterization of feedstock and coatings is provided. The agglomerated structure of the powder proved to be suitable to obtain successfully thick hydroxyapatite coatings. A crystallite size below ∼20 nm in the powder and the as-sprayed coatings is calculated by the Rietveld X-ray refinement method and agreed by Transmission Electron Microscopy. Some wipe tests were carried out on Ti6Al4V substrates in order to study the deposition of single particles and the nanoscale features were evaluated. The resulting structure indicates that there is no delimitation of particle boundaries and the overall coating has been formed by effective compaction of the original nanocrystallites, leading to consistent and consolidated layers.  相似文献   

12.
The structure of coatings formed by the low pressure plasma-polymerization of hexamethyldisiloxane has been studied by FTIR and XPS techniques. The coatings were performed in two pressure regions: 0.63–0.88 and 0.36–0.44 torr. At both pressures much of the structure of the monomer appeared to be maintained. Coatings deposited at the higher pressure showed the expected increase in abstraction of methyl groups and formation of Si ? O ? Si crosslinks with increasing discharge power. The lower pressure coatings showed a markedly more diverse pattern of peaks associated with Si ? O bonds. The spectra of the moncmer, hexamethyldisiloxane, and of a highly crosslinked silicone resin were examined in order to clarify the way in which FTIR spectra varied during the polymerization and crosslinking processes. The different structures observed emphasize a considerable potential for tailoring structure by varying deposition conditions.  相似文献   

13.
《Electrochimica acta》2005,50(10):2065-2072
Type 316L SS play a key role in the bone replacement surgery due to its excellent mechanical features, availability at low cost and ease of fabrication. However it fails miserably in vivo conditions due to corrosion-related problems. Hence an alternative method on the development of hydroxyapatite (HAP) coatings has been elucidated to impart corrosion resistance of the base metal and ensure biocompatibility of the ceramic on the metal surface. This also could not match the implant at the host site due to the continuous interaction of hostile environment with the implant and results in the dissolution of both ceramic and metal. An artificially induced passive layer on the metal surface prior to coating may improve the nature of implant on the resistance to corrosion. In the present study, the effect of HNO3 treatments on 316L SS and the coatings on passivated 316L SS is being explored. Electrochemical studies involving cyclic anodic polarization experiments and impedance analysis in Ringer's solution were done to determine the corrosion resistance of the coatings. The leach out characteristics of the coatings was determined at the impressed potential. The results have indicated the efficiency of HAP coatings on HNO3-treated surface.  相似文献   

14.
Silane coatings are applied to metal surfaces for various purposes, e.g., to form a protective layer against corrosion or to act as a primer for subsequent coating. In this work bis-1,2-(triethoxysilyl) ethane (BTSE) was used as a precursor to deposit coatings on Al 99.99% substrates with three different techniques: dipcoating (water based solution), vacuum plasma and atmospheric plasma. Infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy (XPS) and field emission gun-scanning electron microscope (FE-SEM) were used to characterise the structure, composition and surface morphology of the silane coatings. The aim of this investigation is to compare the surface and bulk characteristics of the films prepared with the three different methods, in order to get information on how the BTSE molecule is modified by the deposition technique.  相似文献   

15.
The excellent properties of magnesium alloys, especially the high strength/weight ratio, make them desirable materials in the automotive industry. However, their high corrosion susceptibility has greatly limited or even prevented their larger scale use for various applications. Organic coating is one of the most effective ways to prevent magnesium alloys from corrosion. In this report, the recent progress of organic coatings on magnesium alloys and techniques for evaluating the performance of organic coatings are reviewed.As a critical layer in a normal coating system, organic coating has great potential to prevent magnesium alloys from corrosion attack. However, some unsolved problems currently limit the application of organic coatings. Firstly, organic coatings usually have poor adhesion if they are applied without an appropriate pre-treatment. Sol–gel coating or plasma polymerization requires the least pre-treatment prior to deposition. However, the corrosion and wear resistance of these coatings have not been documented. Secondly, it is difficult to prepare a uniform, pore-free organic layer. So, it is usually necessary to apply multiple layers of these coatings to provide sufficient/optimum corrosion and wear resistance. Finally, a number of organic coating techniques are still solvent based, which poses an environmental concern. New water-borne and powder coating technologies should be developed.In order to evaluate the performance of organic coatings on magnesium, both electrochemical and non-electrochemical techniques have been developed. Information from different techniques gives insight into the organic coating/magnesium alloy interface in different aspects. Comprehensive knowledge about the interface is indispensible for understanding the degradation of the organic coating and developing new coating strategies.  相似文献   

16.
《Ceramics International》2017,43(17):14968-14975
The aim of this paper is to prepare the hydroxyapatite by Ion Beam Assisted Deposition and to investigate in terms of its elemental and phase composition, roughness and in vitro corrosion resistance. The coatings were prepared with and without applying bias on substrate, in order to find the effect of bias on the chemical, structural, morphological and anti-corrosive properties. The biased coatings exhibited Ca/P ratio closer to the value of the stoichiometric HAP (1.67). The phase composition is not affected by the bias evolution. The adhesion of both coatings is still satisfactory for biomedical applications, irrespective of the bias. Hydroxyapatite deposited without bias presented the best corrosion resistance in SBF at 37 °C, probably due to its smooth surface and low porosity. Moreover, this coating proved to have the highest protection ability at the SBF corrosive attack.  相似文献   

17.
In the present work, gadolinium zirconate (Gd2Zr2O7) coatings have been developed on Inconel-718 substrates by electron beam physical vapor deposition (EB-PVD) technique. The structural, morphological and mechanical properties as a function of substrate temperature have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), nanoindentation and scratch tests. XRD analysis revealed that the coatings showed cubic defect fluorite phase, and no secondary phase formation was observed in the coatings during deposition. The decrease in the lattice constant of the fluorite phase with increasing deposition temperature was explained on the basis of strain relaxation and vacancy concentration. Increased surface roughness of the coatings has been found with increasing substrate temperature as a result of increased crystallite size. An improved coating adhesion achieved for the coating deposited at higher substrate temperature of 973?K was confirmed by scratch test. Nanoindentation measurements indicated higher hardness (7.7?GPa) and resistance to plastic deformation and better capability to accommodate deformation energy for the coatings prepared at higher deposition temperature.  相似文献   

18.
Electrodeposition and magnetron sputtering techniques have been employed for the deposition of Ni and bilayer NiCrN coatings, respectively, on mild steel substrate. Ni electrodeposition was performed using sulfate Watt’s bath, while magnetron sputtering was performed on electrodeposited Ni using DC power 350 W and base pressure of 3 × 10?5 Torr in order to prepare bilayer NiCrN coatings. Structural and mechanical properties of Ni and bilayer NiCrN coatings have been investigated using various characterization techniques such as SEM-EDX, XRD, hardness, adhesion testing, etc. SEM analysis reflects the formation of spherical/nodular particles of varying sizes in NiCrN coating whereas Ni coating shows irregular, agglomerated, and non-uniform distribution of particles. Formation of hard CrN phase in NiCrN coating has been confirmed by XRD and EDX. NiCrN coating exhibits better hardness in comparison with Ni coating due to the formation of nitride phase. Micro scratch testing of bilayer NiCrN coating shows better interlayer adhesion and adhesion with mild steel substrate. The combination of electrodeposition and magnetron sputtering can produce inexpensive NiCrN coating containing hard CrN phase with better mechanical properties for automotive applications.  相似文献   

19.
Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for use in dental applications. In this study, strontium-doped brushite coatings were deposited on titanium by electrochemical deposition. The phase composition of the coating was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologies of the coatings were studied through scanning electron microscopy, and the cytocompatibility and bioactivity of the strontium-doped brushite coatings were evaluated using cultured osteoblasts. Osteoblast proliferation was enhanced by the addition of strontium, suggesting a possible mechanism by which strontium incorporation in brushite coatings increased bone formation surrounding the implants. Cell growth was also strongly influenced by the composition of the deposited coatings, with a 10% Sr-doped brushite coating inducing the greatest amount of bone formation among the tested materials.  相似文献   

20.
《Ceramics International》2019,45(16):20002-20010
Load-bearing implants are developed with a particular emphasis placed on an application of ceramic hydroxyapatite coatings in order, to enhance the bioactivity of titanium implants and to shorten the healing time. Therefore, thin, fully crystalline coatings that are, highly adhesive, hydrophilic and demonstrating antibacterial properties are ly looked for. The aim of this research was to develop and characterize the properties of (nano)hydroxyapatite coatings implemented with nanocopper particles and obtained by the electrophoretic method. The deposition was carried out on the Ti13Zr13Nb alloy, either on a bare surface or a nanotubular oxide layer. The deposition was made for 1 or 2 min. The chemical composition, phase composition, coating structure, homogeneity, thickness, nanoindentation and nanomechanical properties, adhesion determined by a nanoscratch test, and wettability measured by a contact angle were investigated. The presence of nanotubular oxide layers caused no significant change in nanoindentation and nanomechanical propertie and an increase in adhesion strength and a decrease in the contact angle. The increase in deposition time resulted in an increased thickness, a decreased hardness, an increased adhesion strength and wettabilty. The observed effects in the composite (nano)HAp/Cu – (nano)TiO2 coatings are attributed to the change in the structure of coatings following the increasing deposition time and coating thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号