共查询到20条相似文献,搜索用时 15 毫秒
1.
A model rate equation for transient thermal conduction 总被引:3,自引:0,他引:3
Borivoje B. Mikic 《International Journal of Heat and Mass Transfer》1967,10(12):1899-1904
2.
Peyman Ayoubi 《热应力杂志》2017,40(9):1166-1183
In this article, transient analysis of functionally graded material (FGM) cylindrical shell subjected to thermomechanical load is performed. Mechanical and thermal properties of the shell are assumed to be graded in radial direction according to power law distribution. In the case of simply supported edge condition, problem is solved analytically using Fourier series expansions for stresses and displacements along the axial direction and state space technique along the radial direction and Laplace transformation technique for time domain. For other boundary conditions, we use a semianalytical method by applying differential quadrature method along the axial direction and the state space method along radial direction. Accuracy of this approach is validated by comparing the results with the results reported in the literature. Moreover, influence of edge boundary conditions, length to mid radius ratio, FGM direction and time on stresses, and displacements is studied. 相似文献
3.
Transient energy transport in thin-layer films with a nonlinear thermal boundary resistance is analyzed theoretically within the framework of the dual-phase-lag heat conduction model. An iterative finite difference numerical method is used and is verified using a derived semi-analytical solution of the problem. Effects of the thermo-physical properties on energy transport when a two-layer film is exposed to a thermal pulse of certain duration and strength are presented. The thermal boundary resistance, the heat flux and temperature gradient phase lags and the thermal conductivities and heat capacities all are important factors that characterize energy transport through the interface and the temperature distribution in the two layers. The maximum interfacial temperature difference that takes place in the transient process of thermal pulse propagation is found to be the proper choice to measure the perfect-ness of the interface with a finite thermal boundary resistance. The results show that even with high values of the thermal boundary resistance the maximum interfacial temperature difference can be very small when the thermal pulse propagates from a high-thermal conductivity and heat capacity layer to a low-thermal conductivity and heat capacity layer. For a certain range of the thermal conductivities and heat capacities, the maximum interfacial temperature difference approaches zero even with high values of the thermal boundary resistance. Thermal conductivities and heat capacities are much more important in characterizing transient heat transfer through the imperfect interface than the phase lags of the heat flux and temperature gradient. 相似文献
4.
Different from previous two-dimensional thermal weight function (TWF) method, a three-dimensional (3D) TWF method is proposed for solving elliptical interface crack problems in bimaterial structures under a transient thermal loading. The present 3D TWF method based on the Betti's reciprocal theorem is a powerful tool for dealing with the transient thermal loading due to the stress intensity factors (SIFs) of whole transient process obtained through the static finite element computation. Several representative examples demonstrate that the 3D TWF method can be used to predict the SIFs of elliptical interface crack subjected to transient thermal loading with high accuracy. Moreover, numerical results indicate that the computing efficiency can be enhanced when dealing with transient problems, especially for large amount of time instants. 相似文献
5.
This study deals with comparison of experimental and theoretical results of transient temperature variations in multilayered building walls and flat roofs, and heat flow through the building structures. Experimental and theoretical models are presented to find the transient temperature variations in these structures and heat flow through these elements, which depends on inside surface and room air temperatures. Instantaneous inside and outside air temperatures, and surface temperatures of each wall and roof layers are measured by using the experimental model consisted of two rooms, cooling units, measuring devices and computers. A computer program based on the theoretical model is developed to perform numerical calculations. Hourly temperature variations of the nodal points are computed numerically over a period of 24 h by using the hourly measured ambient air temperatures and solar radiation flux on a horizontal surface for the city of Gaziantep (37.1°N), Turkey, and also by using thermophysical properties of the structures. Results obtained from the experimental and theoretical models are compared with each other, and validation of the theoretical model is verified in this paper. Computations for various multilayer building walls of briquette, brick, blokbims, and autoclaved aerated concrete (AAC), which are commonly used in Turkey are repeated for finding heat gain through these structures, and results are compared to determine suitable wall material. It is observed that AAC and blokbims are more suitable wall materials than briquette and brick due to heat flow through these elements. 相似文献
6.
A. Olivares J. Rekstad M. Meir S. Kahlen G. Wallner 《Solar Energy Materials & Solar Cells》2008,92(4):445-452
An indentation test is proposed to study the degradation of extruded polymeric solar absorbers. The thermal degradation caused by accelerated aging is investigated. The results are compared with the thermal and mechanical impacts during the operation of the solar collector. 相似文献
7.
The thermal properties of the layers of a wall, whether or not exposed to solar radiation, are calculated provided that the boundary conditions and some values of the transient temperature field within the wall are known. The developed procedure is based on the adjoint-solution technique and is applicable both to walls in operation and to the design of walls that are required to meet certain temperature specifications. In the former case, temperature measurements are needed. Theoretical and experimental tests have proved the accuracy of the method. Applications may be found in energy management and thermal storage in buildings, in the improvement of passive systems and in the design of multilayer slabs forming parts of heat-transfer equipment. © 1997 by John Wiley & Sons, Ltd. 相似文献
8.
Improving our knowledge of flame-wall interaction is of relevance to performing near-wall combustion calculations. Quenching distance is to be determined accordingly, as a major parameter of flame quenching. For this purpose, an equation describing the behavior of single-wall flame quenching has been derived from a simplified model of laminar flame-wall interaction. It allows evaluating quenching distance from wall heat flux and mixture properties; a significant advantage of this formula is the absence of any empirical coefficient. To assess its reliability, the results computed with this equation have been compared to experimental data concerning laminar flame-wall interaction. For this purpose, single-wall quenching parameters have been recorded in both head-on and sidewall configurations. Quenching distance and wall heat flux have been measured simultaneously, during the combustion of quiescent methane-air mixtures in a constant-volume vessel. Quenching distance is determined through direct visualization, whereas wall heat flux is processed from the time evolution of wall surface temperature. The equation has been verified over the pressure range 0.05-0.35 MPa in stoichiometric and lean mixtures. It shows good agreement with experimental data at first order, with less than 20% variation. 相似文献
9.
A simple mathematical model for calculating the effective thermal conductivity of nanofluids has been developed based on the thermal resistance approach. The model is developed by considering both effects of a solid‐like nanolayer and convective heat transfer caused by Brownian motion which have not been considered simultaneously by most available models in the literature. In addition the correlation of Prasher and Phelan for the convective heat transfer coefficient is modified to take into account the effect of the solid‐like nanolayer. In addition a general value for n (different from the one presented by Tillman and Hill) is introduced to modify the thickness of the solid‐like nanolayer. The latter is done by considering both conduction and convection heat transfer mechanisms. Comparisons with previously published experimental results and other mathematical models show that the presented model could well predict a nanofluids effective thermal conductivity as a function of the nanoparticles mean diameter, volume fraction, and temperature for different kinds of nanofluids. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20290 相似文献
10.
分析了机车轴重转移的计算原理,利用VB程序制作良好的可视化界面,实现现有适用于各种型式、各种牵引方式的机车的轴重转移和理想牵引高度计算的通用方程的计算。通过该界面可以快速方便研究包括一系、二系的悬挂方式及刚度、牵引高度、轴距、牵引电动机的布置方式,还有最大牵引力、车钩高度、轴数等对轴重转移的影响。 相似文献
11.
A new method for numerical simulation of thermal contact resistance in cylindrical coordinates 总被引:1,自引:0,他引:1
Xing Zhang Peizhong Cong Motoo Fujii 《International Journal of Heat and Mass Transfer》2004,47(5):1091-1098
In this paper, a random numbers model using an innovative equiperipheral grid in cylindrical coordinates has been proposed to predict the contact spot distribution of two rough surfaces at various loads. The ability of this method to predict the contact spot distribution has been proven through comparison with results using a conventional equiangular grid. Further, a network method using such an equiperipheral grid has been developed in order to solve a three-dimensional heat conduction problem where two cylindrical specimens were connected to each other along the longitudinal direction. A uniform heat flux is given at the bottom surface of specimen I, a uniform temperature is maintained at the top surface of specimen II, and thermal insulation is assumed at the outer radius of the two specimens. The present numerical results have been compared to calculations using conventional equiangular grids and to experimental results obtained for cylindrical brass specimens. The present results are shown to compare much more closely with experimental measurements than previous calculations using conventional numerical models. 相似文献
12.
L. Perez B. Ladevie P. Tochon J.C. Batsale 《International Journal of Heat and Mass Transfer》2009,52(1-2):407-414
The present probe is developed in order to accurately estimate in situ not only the convective exchange coefficient but also the fouling thickness of heat exchangers from a reliable transient state estimation method.The originality of the estimation method consists in considering a global response time of the system in fouling conditions to be compared to clean conditions. The sensitivity function is then built from the experimental signal without precise knowledge about the model or the absolute thermophysical properties. The reliability of the method is demonstrated in theoretical cases and with calibrated experiments. 相似文献
13.
Chin-Hsiang Cheng Shu-Yu Huang Tsung-Chieh Cheng 《International Journal of Heat and Mass Transfer》2010,53(9-10):2001-2011
A simulation model is developed and used to predict transient thermal behavior of the thermoelectric coolers. The present model amends the previous models, in which the P–N pair is simply treated as a single bulk material so that the temperature difference between the semiconductor elements was not possible to evaluate. Based on the present simulation model, the thermoelectric cooler is divided into four major regions, namely, cold end (region 1), hot end (region 2), and the P-type and N-type thermoelectric elements (regions 3 and 4). Solutions for the three-dimensional temperature fields in the P-type and the N-type semiconductor elements and transient temperature variations in the cold and the hot ends have been carried out. The magnitude of the coefficient of performance (COP) of the thermoelectric cooler are calculated in wide ranges of physical and geometrical parameters. To verify the numerical predictions, experiments have been conducted to measure the temperature variations of both the cold and the hot ends. Close agreement between the numerical and the experimental data of the temperature variations has been observed. 相似文献
14.
This communication presents an investigation of the thickness distribution of a given total thickness of the insulation inside and outside a thermal storage water wall for acheiving the maximum load levelling of the heat flux entering through the wall. Analysis is based on the solution of the heat conduction equation for the temperature distribution in the insulated wall subjected to periodic solar radiation and atmospheric air on one side and in contact with room air at constant temperature (corresponding to air-conditioned rooms) on the other side. an explicit solution for a temperature distribution satisfying the apporpriate boundary conditions at the surface has been derived to obtaing a periodic heat flux through the storage water wall. It is found that for a given total thickness (cost) of insulation the thicknesses of outside and inside insulation must be equal for best load levelling. Moreover, more load levelling is achieved when the whole of the insulation is outside rather than inside the thermal storage water wall. 相似文献
15.
16.
William O. Wray 《Solar Energy》1980,25(4):327-333
The Fanger thermal comfort equation is linearized and used to develop a procedure for assessing thermal comfort levels in passive solar heated buildings. In order to relate comfort levels in non-uniform environments to uniform conditions, a new thermal index called the “equivalent uniform temperature” is introduced. 相似文献
17.
Kuibin Zhou Xiuzhen Wang Meng Liu Jiaoyan Liu 《International Journal of Hydrogen Energy》2018,43(50):22765-22775
Previous experimental results on full-scale jet fires induced by high-pressure hydrogen/natural gas transient leakage can only be suitable for solving practical engineering problems, or testing the limitation of previous models. Thus, this paper presents a theoretical framework for the high-pressure hydrogen/natural gas leakage and the subsequent jet fire. The proposed framework consists of a transient leakage model, a notional nozzle model, a jet flame size model, a radiative fraction correlation and a line source radiation model. The framework is validated by comparing the model predictions and experimental measurements of mass flow rate, total flame height and thermal radiation field of hydrogen, natural gas, hydrogen/natural gas mixture jet fires with a flame height up to 100 m. The comparison shows that the theoretical framework can give considerable predictions to properties of full-scale jet fires induced by high-pressure hydrogen/natural gas transient leakage. 相似文献
18.
The main purpose of this paper is to perform a comparative study of strength behavior for cylindrical shell intersections with and without pad reinforcement under out-of-plane moment loading on nozzle. Three pairs of full-scale test vessels with different d/D ratios were designed and fabricated for testing and analysis. A three-dimensional nonlinear finite element numerical analysis was also performed. The maximum elastic stress for each vessel under per unit moment on nozzle is provided. The plastic limit moment on nozzle is obtained by load–displacement and load–strain curves for each test vessel. The results indicate that the effect of pad reinforcement on decreasing maximum elastic stress and increasing plastic limit load is obviously effective. The study results will serve as the available data for understanding the usefulness of pad reinforcements and as the basis for developing an advanced design method by limit analysis for pad-reinforced cylindrical vessels under external loads on nozzle. 相似文献
19.
A dynamic method for testing solar flat-plate collectors under unsteady weather conditions has been validated through detailed experiments and compared with two established standards: the ASHRAE 93–86 standard for steady state testing and the British standard BS 6757 for transient testing. The new method is based on a lumped capacity model derived from a general energy balance of the collector under actual conditions. The characteristic parameters are estimated using the standard methods for unconditional non-linear optimisation. Extensive experiments have been carried out under a wide range of operating and environmental conditions. Four different collectors commercially available in the market have been tested at the same location and using the same experimental rig. The results on the basis of the new method are very close to those obtained from the ASHRAE standard. The average values of FR(τα)e and FRUL by the new method are within ±3% of the steady state values. The results of the BS 6757 method are within ±2% for FR(τα)e but those of FRUL are about 12% lower than the ASHRAE values. On average, the difference between the theoretical predictions for the outlet temperature by the new method and the corresponding experimental measurements are about ±0.3°C, while the predictions by the British standard under the same conditions are about 2°C lower than measured values. The percentage deviations of predictions for the temperature rise based on the two methods, averaged over a day, are about ±8% and ±36% respectively. The new dynamic method requires less time for experimentation, one day's test is enough to give accurate estimation of the collector parameters. The method does not impose any restriction on the variation of weather or operating parameters and, therefore, has a quite general applicability. 相似文献
20.
《Journal of power sources》2006,159(2):956-967
Transient thermal analysis plays a central role in the design and optimization of high temperature solid oxide fuel cells (SOFCs) during startup/shutdown, because of the potential for damaging thermal gradients to develop within the SOFC components. The optimal design of a heating/cooling process is one that minimizes the total time required to reach a prescribed final operating temperature, while not exceeding given thresholds of maximum allowable temperature gradients. To this end, we consider the SOFC unit cell, which is heated by hot air supplied into the oxidizer channel at a specified, time-dependent inlet temperature. Beginning with a general thermal model of the cell, we develop and evaluate limiting cases that allow closed-form analytical solutions of the time-varying temperature fields, from which heating time and maximum temperature gradient are calculated. The results are generalized by presentation in terms of a modified effective Peclet number and dimensionless inlet temperature function. Finally, the accuracy of these predictions is evaluated by comparison to results of 3-D CFD modeling in Fluent, and design maps for optimizing the transient heating process are presented. Results indicate that the reduced-order models’ simplicity, computational savings, and ability to capture the essential physics of the transient process justify their use in design calculations over more complex, highly detailed, numerical/CFD schemes. 相似文献