首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents results of laboratory testing of unrestrained drying shrinkage during a period of 154 days of different concrete mixtures from the Brazilian production line that utilize ground granulated blast-furnace slag in their compositions. Three concrete mixtures with water/cement ratio of 0.78(M1), 0.41(M2), and 0.37(M3) were studied. The obtained experimental data were compared with the analytical results from prediction models available in the literature: the ACI 209 model (ACI), the B3 model (B3), the Eurocode 2 model (EC2), the GL 2000 model (GL), and the Brazilian NBR 6118 model (NBR), and an analysis of the efficacy of these models was conducted utilizing these experimental data. In addition, the development of the mechanical properties (compressive strength and modulus of elasticity) of the studied concrete mixtures was also measured in the laboratory until 126 days. From this study, it could be concluded that the ACI and the GL were the models that most approximated the experimental drying shrinkage data measured during the analyzed period of time.  相似文献   

2.
Pelletization is a worldwide process used in producing artificial aggregates although its usage is not common in Turkey. In this study, lightweight aggregates (LWAs) were manufactured through cold-bonding pelletization of ground granulated blast furnace slag (G) and two types of fly ash with different finenesses (Fly ash A and B). Ordinary Portland cement (PC) was used as a binder at varying amounts from 5 to 20 % by weight. A total of 20 cold-bonded lightweight aggregates were produced at room temperature with different combinations of PC, FA and/or G. The hardened aggregates were tested for specific gravity, water absorption, and crushing strength. Thereafter, lightweight concretes (LWCs) were produced with water to cement ratio of 0.50 and a cement content of 400?kg/m3 by using such lightweight aggregates. The hardened concretes were tested for compressive strength at 28 and 56?days to explore the effect of aggregate types on the compressive strength development. Test results revealed that the amount of cement content had a significant effect on the strength of LWAs which in turn governed the variation in compressive strength of the LWCs. The highest 28 and 56-day compressive strengths of 43 and 51?MPa, respectively were achieved for the concretes including LWAs produced from the blend of 40 % slag, 40 % FA-A and 20 % PC.  相似文献   

3.
Inclusion of ground granulated blast-furnace slag (GGBFS) with class F fly-ash can have a significant effect on the setting and strength development of geopolymer binders when cured in ambient temperature. This paper evaluates the effect of different proportions of GGBFS and activator content on the workability and strength properties of fly ash based geopolymer concrete. In this study, GGBFS was added as 0%, 10% and 20% of the total binder with variable activator content (40% and 35%) and sodium silicate to sodium hydroxide ratio (1.5–2.5). Significant increase in strength and some decrease in the workability were observed in geopolymer concretes with higher GGBFS and lower sodium silicate to sodium hydroxide ratio in the mixtures. Similar to OPC concrete, development of tensile strength correlated well with the compressive strength of ambient-cured geopolymer concrete. The predictions of tensile strength from compressive strength of ambient-cured geopolymer concrete using the ACI 318 and AS 3600 codes tend to be similar to that for OPC concrete. The predictions are more conservative for heat-cured geopolymer concrete than for ambient-cured geopolymer concrete.  相似文献   

4.
Granulated slag from metal industries and fly ash from the combustion of coal are among the industrial by-products and have been widely used as mineral admixtures in normal and high strength concrete. Due to the reaction between calcium hydroxide and fly ash or slag, compared with Portland cement, the hydration of concrete containing fly ash or slag is much more complex. In this paper, by considering the producing of calcium hydroxide in cement hydration and the consumption of it in the reaction of mineral admixtures, a numerical model is proposed to simulate the hydration of concrete containing fly ash or slag. The heat evolution rate of fly ash or slag blended concrete is determined from the contribution of both cement hydration and the reaction of mineral admixtures. Furthermore, a temperature rise in blended concrete is evaluated based on the degree of hydration of cement and mineral admixtures. The proposed model is verified with experimental data on the concrete with different water-to-cement ratios and mineral admixtures substitution ratios.  相似文献   

5.
The microstructure and composition of hardened cement pastes of a wide range of blends of ground granulated blast-furnace slag with ordinary Portland cement have been studied, using techniques of transmission electron microscopy with microanalysis combined with electron microprobe analysis. Throughout the range, a calcium silicate hydrate gel (C-S-H) is the dominant cementing phase, present in the inner product within the space originally occupied by either slag grains or alite or belite grains originating from the Portland cement, or in the outer product in the originally water-filled spaces. The morphology and composition of the outer product C-S-H and the composition of inner product C-S-H change with blend composition. Inner product of slag grains contains C-S-H of the same composition as the outer product C-S-H, intimately mixed with a Mg, Al-rich hydroxide phase whose fineness shows considerable variation. Inner product C-S-H of alite or belite does not differ significantly in CaSi ratio from that of slag. The reduction of CaSi ratio of all forms of C-S-H with increasing slag loading may have implications for the pH-buffering capacity of blends of large slag loading.  相似文献   

6.
From our previous findings, the recycling of ceramic waste aggregate (CWA) in mortar has been proved an ecological means plus an excellent outcome against chloride ingress. The CWAs were porcelain insulator wastes supplied from an electric power company, which were crushed and ground to fine aggregate sizes. In this study, to further develop the CWA mortar as an eco-efficient construction material, ground granulated blast-furnace slag (GGBS) was incorporated. The slag (having the Blaine fineness of 6230 cm2/g) was utilized as a supplementary cementitious material (SCM) at three different replacement levels of 15%, 30%, and 45% of cement by weight. The efficiency of the GGBS on enhancing chloride resistance in the CWA mortars was experimentally assessed by using a silver nitrate solution spray method and an electron probe microanalysis (EPMA). The tests were carried out on mortar samples after immersed in a 5.0% NaCl solution for 24 weeks. Another set of the mortar samples was exposed to a laboratory ambient condition for 24 weeks and then followed with a carbonation test. The test results indicated that the resistance to the chloride ingress of the CWA mortar becomes more effective in proportion to the replacement level of the GGBS. In contrast, the carbonation depth of the CWA mortar increases with the increase of the GGBS. The activeness of the GGBS was also evaluated on the basis of the compressive strength development up to 91 days. Due to its high fineness, the GGBS can be used up to 30% while the high relative strength (more than 1.0) is achieved at all ages.  相似文献   

7.
Recycled concrete is a material with the potential to create a sustainable construction industry. However, recycled concrete presents heterogeneous properties, thereby reducing its applications for some structural purposes and enhancing its application in pavements. This paper provides an insight into a solution in the deformation control for recycled concrete by adding supplementary cementitious materials fly ash and blast furnace slag. Results of this study indicated that the 50% fly ash replacement of Portland cement increased the rupture modulus of the recycled concrete. Conversely, a mixture with over 50% cement replacement by either fly ash or slag or a combination of both exhibited detrimental effect on the compressive strength, rupture modulus, and drying shrinkage. The combined analysis of environmental impacts and mechanical properties of recycled concrete demonstrated the possibility of optimizing the selection of recycled concrete because the best scenario in this study was obtained with the concrete mixture M8 (50% of fly ash+ 100% recycled coarse aggregate).  相似文献   

8.
Ground granulated blast furnace slag (GGBS), due to its pozzolanic nature, could be a great asset for the modern construction needs, because slag concretes can be of high performance, if appropriately designed. The use of GGBS as a cementitious material as well as fine filler is being increasingly advocated for the production of High Performance Concrete (HPC), Roller Compacted Concrete (RCC) and self compacting concrete (SCC), etc. However, for obtaining the required high performance in any of these concrete composites, slag should be properly proportioned so that the resulting concrete would satisfy both the strength and performance criteria requirements of the structure. The present paper is an effort towards presenting a new mix design methodology for the design of self compacting GGBS concretes based on the efficiency concept. The methodology has already been successfully verified through a proper experimental investigation and the self compacting slag concretes were evaluated for their self compactability and strength characteristics. The results indicate that the proposed method can be capable of producing high quality SCC.  相似文献   

9.
This paper presents preliminary results of a research project into the influence of moist curing on the potential durability of concrete. Durability is characterized by measuring the oxygen permeability and water absorption at various depths in the covercrete. Concretes containing plain OPC, an OPC-FA blend and an OPC-GGBS blend were used. A range of strength grades was tested for each of these binder types. Concretes were exposed to moist curing conditions for 1, 3, 7 and 28 days before being tested at 28 days after casting. The main conclusions are: (i) moist curing has a marked influence on the potential durability of concrete and (ii) a relatively greater influence on durability can be effected by extending the duration of early-age moist curing rather than decreasing the binder/water ratio.  相似文献   

10.
This research aims to study the effect of ground fly ash (GFA) and ground bagasse ash (GBA) on the durability of recycled aggregate concrete. Recycled aggregate concrete was produced with recycled aggregate to fully replace crushed limestone in the mix proportion of conventional concrete (CON) and GFA and GBA were used to partially replace Portland cement type I at the rate of 20%, 35%, and 50% by weight of binder. Compressive strength, water permeability, chloride penetration depth, and expansion by sulfate attack on concretes were investigated.The results reveal that the use of GFA and GBA to partially replace cement in recycled aggregate concrete was highly effective in improving the durability of recycled aggregate concrete. The suitable replacement of GFA or GBA in recycled aggregate concrete to obtain the suitable compressive strength, low water permeability, high chloride penetration resistance, and high sulfate resistance is 20% by weight of binder.  相似文献   

11.
The use of fly ash in concrete is very common nowadays, mainly as a partial replacement for cement. However, the amount actually used in many countries is only between 15 to 25 percent. Disposal of unusable fly ash raises severe ecological problems and is quite expensive, not to mention the difficulty of finding dumping sites. Increased utilization of fly ash is thus, in many countries, in the national interest. A research program was initiated on the utilization of large quantities of fly ash Class F of marginal-quality in concrete as partial fine-sand replacement. The present paper studies the effect of such replacement on the properties of fresh concrete. The mechanical properties of the hardened concrete will be presented in another paper. The workability of most fly-ash mixtures was better than that of the reference mix (without fly ash). The water requirement of the fly-ash mixtures was either the same, or higher by about 9 percent, as compared with the reference mix. The rate and volume of bleeding were rather similar for the fly ash and the reference mixes. However, a significant reduction in bleeding by the fly-ash was found in the concrete mixtures with the chemical admixtures water reducer and retarder and high-range water reducer. Setting was delayed by the fly-ash, but the additional delay, that beyond the effect of the chemical admixture proper, was much less in the mixtures with the water reducer and retarder and negligible in the mixtures with the high-range water reducer.  相似文献   

12.
In this study the hydration of quaternary Portland cements containing blast-furnace slag, type V fly ash and limestone and the relationship between the types and contents of supplementary cementitious materials and the hydrate assemblage were investigated at ages of up to 182 days using X-ray diffraction and thermogravimetric analysis. In addition thermodynamic modeling was used to calculate the total volume of hydrates. Two blast-furnace slag contents of 20 and 30 wt.% were studied in blends containing fly ash and/or limestone at a cement replacement of 50 wt.%. In all cases the experiments showed the presence of C–S–H, portlandite and ettringite. In samples without limestone, monosulfate was formed; in the presence of limestone monocarbonate was present instead. The addition of 5 wt.% of limestone resulted in a higher compressive strength after 28 days than observed for cements with lower or higher limestone content. Overall the presence of fly ash exerts little influence on the hydrate assemblage. The strength development reveals that amounts of up to 30 wt.% fly ash can be used in quaternary cements without significant loss in compressive strength.  相似文献   

13.
This paper summarizes the results of studies carried out at the Building Research Establishment in the UK, on the performance and long-term durability of concrete where ground glassy blast-furnace slag (granulated and pelletized) has been used as a cementitious material. Using data from tests on site structures and laboratory and exposure site studies, comparisons are made of the properties and performances of the slag cement concretes with normal Portland cement concretes of similar mixture proportions. A number of recommendations are given for the effective use of ground glassy blast-furnace slag in concrete. The many technical benefits available to the concrete user, such as reduced heat evolution, lower permeability and higher strength at later ages, decreased chloride ion penetration, increased resistance to sulfate attack and alkali silica reaction were affirmed. However, a cautionary warning of the importance of good early curing is made to ensure that the adverse effects of higher rates of carbonation, surface scaling and frost attack are minimized. The paper is intended to provide guidance for those concerned with the design, specification, application and performance of concrete in practice where slag can also help to reduce costs and energy demands in the production of cement compared with normal Portland cement.  相似文献   

14.
15.
The partial replacement of clinker, the main constituent of ordinary Portland cement by pozzolanic or latent hydraulic industrial by-products such as ground granulated blast furnace slag (GGBFS), effectively lowers the cost of cement by saving energy in the production process. It also reduces CO2 emissions from the cement plant and offers a low priced solution to the environmental problem of depositing industrial wastes. The utilization of GGBFS as partial replacement of Portland cement takes advantage of economic, technical and environmental benefits of this material. Recently offshore, coastal and marine concrete structures were constructed using GGBFS concrete because high volume of GGBFS can contribute to the reduction of chloride ingress. In this paper, the influence of using GGBFS in reinforced concrete structures from the durability aspects such as chloride ingress and corrosion resistance, long term durability, microstructure and porosity of GGBFS concrete has been reviewed and discussed.  相似文献   

16.
Corrosion of steel in concrete is one of the major causes of premature deterioration of reinforced concrete structures, leading to structural failure. To prevent the failure of concrete structures because of corrosion, impermeable and high performance concretes should be produced various mineral admixtures. In this study, plain and reinforced concrete members are produced with mineral admixtures replacing cement. Ground granulated blast-furnace slag (GGBFS) has replaced cement as mineral admixture at the ratios of 0%, 25% and 50%. The related tests have been conducted at the ages of 28 and 90, after exposing these produced plain and reinforced concrete members to two different curing conditions. The unit weight, ultrasonic pulse velocity, splitting tensile and compressive strength tests are conducted on plain concrete members. Half-cell potential and accelerated corrosion tests are also conducted on reinforced concrete members. According to the test results, it is concluded that the curing age and type are important and corrosion resistant concrete can be produced by using GGBFS mineral admixture at the ratio of 25%.  相似文献   

17.
Currently, ground granulated blast-furnace slag cements use in cement-based materials is being increasing because perform well in marine and other aggressive environments. However, mortars and concretes made of this type of cement exhibit high carbonation rates, particularly in badly cured cement-based materials and when high blast-furnace slag contents are used. Concrete reinforcement remains passive but can be corroded if the pore solution pH drops as a result of the carbonation process promoting the reinforced concrete structure failure during its service life. Results show the very sensitive response to wet-curing time of slag mortars with regard to the natural carbonation resistance. Then, a minimum period of 3–7 days of wet curing is required in order to guarantee the usual projected service life in reinforced concrete structures. In this work, estimation models of carbonation depth and carbon dioxide diffusion coefficient in ground granulated blast-furnace slag mortars as a function of the curing period and the amount of ground granulated blast-furnace slag are proposed. This information will be useful to material and civil engineers in designing cement-based materials and planning the required curing time depending on their ground granulated blast-furnace slag content.  相似文献   

18.
Cementless slag ash concrete may be manufactured using high-calcium fly ash and silica fume as replacements for a binder and a microfiller, and incorporating slag sand from thermal power plants (TPP) as an aggregate. This concrete consists of waste products from TPP (fly ash and slag) and ferro-alloy plants (silica fume) and contains neither natural nor artificial aggregates for lightweight and heavy concretes. Silica fume (10–20% by weight of ash) and hot water together with subsequent heat treatment of concrete products or of castin situ structures binds the excess free calcium oxide present in the ash, and thus prevents deterioration of the concrete. The processes of concrete structure formation were investigated after 24 hours, 28 days, 3 and 6 months and the physico-mechanical, deformation and special properties (frost resistance, heat conductivity, protection of reinforcement from corrosion) were studied. This concrete conforms to the Russian Federation GOST requirement for use in single, two-storey buildings. The cost of the concrete is reduced by a factor of 3 compared with that of ordinary concrete.  相似文献   

19.
An experimental program was carried out to study the properties of self-compacting concrete (SCC) made with Class F fly ash. The mixes were prepared with five percentages of class F fly ash ranging from 15% to 35%. Properties investigated were self-compactability parameters (slump flow, J-ring, V-funnel, L-box and U-box), strength properties (compressive and splitting tensile strength), and durability properties (deicing salt surface scaling, carbonation and rapid chloride penetration resistance).  相似文献   

20.
Hydration of alkali-activated ground granulated blast furnace slag   总被引:4,自引:0,他引:4  
The hydration of ground granulated blast furnace slag (GGBFS) at 25 °C in controlled pH environments was investigated during 28 days of hydration. GGBFS was activated by NaOH, and it was found that the rate of reaction depends on the pH of the starting solution. The main product was identified as C-S-H, and, in the pastes with high pH, hydrotalcite was observed at later stages of hydration. The pH of the mixing solution should be higher than pH 11.5 to effectively activate the hydration of GGBFS. As deduced from very low electrical conductivity measurements, GGBFS pastes had very tortuous and disconnected pores. The effect of the pH of the aqueous solution on the composition, microstructure and properties of alkali-activated GGBFS pastes are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号