首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the possibility of utilizing recycled high impact polystyrene (HIPS) as a sand substitute in cement mortar, in order to reduce the solid waste disposal problem and thereby environmental pollution and energy consumption. The results show that the compressive strength and splitting tensile strength of mortar are decreased by replacing sand with HIPS, but the decrease in the splitting tensile strength is much smaller. HIPS makes the mortar become more ductile and increases the energy dissipation capacity. HIPS decreases the dry bulk density, dynamic modulus of elasticity, thermal conductivity, and also water vapor permeability, but does not affect the resistance to freeze–thaw cycles. The use of mortar made with various percentages of HIPS offers promise for applications as medium or light weight concrete, mostly due to its improved thermal isolation, while adding value to a post-consumer plastic material that is now generally treated as solid waste.  相似文献   

2.
Over the last decade, new types of display technologies have increasingly replaced cathode ray tube (CRT) displays leading to an increase in the disposal of discarded old CRT monitors and TV sets. The present study is a further development of our previous work to explore the effects of using different size fractions of crushed CRT glass as 100 % substitution of sand in cement mortar. A range of cement mortar mixes were prepared and the tests conducted included table flow (fluidity), mechanical strength, drying shrinkage, alkali–silica reaction (ASR) expansion and toxicity characteristic leaching procedures. Generally, the results obtained for the CRT glass-based cement mortars were comparable to those of the beverage glass mortars except the hardened density due to the presence of lead in the CRT glass. Decreasing the particle size of the CRT glass led to a decrease in fluidity, compressive strength and water absorption. However, the use of finer glass particles slightly improved the flexural strength and reduced the risk of expansion due to ASR due to its pozzolanic reaction. The experimental results indicated that treated CRT glass can be utilized as 100 % replacement of sand in cement mortar regardless of its particle size.  相似文献   

3.
This paper presents an experimental study on the properties and on the durability of concrete containing ceramic wastes. Several concrete mixes possessing a target mean compressive strength of 30 MPa were prepared with 20% cement replacement by ceramic powder (W/B = 0.6). A concrete mix with ceramic sand and granite aggregates were also prepared as well as a concrete mix with natural sand and coarse ceramic aggregates (W/B = 0.5). The mechanical and durability performance of ceramic waste based concrete are assessed by means of mechanical tests, water performance, permeability, chloride diffusion and also accelerated aging tests. Results show that concrete with partial cement replacement by ceramic powder although it has minor strength loss possess increase durability performance. Results also shows that concrete mixtures with ceramic aggregates perform better than the control concrete mixtures concerning compressive strength, capillarity water absorption, oxygen permeability and chloride diffusion. The replacement of cement and aggregates in concrete by ceramic wastes will have major environmental benefits.  相似文献   

4.
Different mix proportions of sand, cement and rice husk ash (RHA) were studied for use in sandcrete blocks. Optimum water/(cement+RHA) ratios were determined at different mix proportions. Compressive strengths of various mix proportions at 7, 28 and 60 days were also determined. The optimum water/(cement+RHA) ratio increased with rice husk ash contents. Test results showed that up to 40% RHA could be added as a partial replacement for cement without any significant change in compressive strength at 60 days. Compressive strengths of various mix proportions were compared with British Statutory minimum compressive strengths of bricks for various walls and it was found that sandcrete blocks of 1∶5 mortar mixes with 40% RHA (by weight of cement) could be used in both load and non-load bearing walls.  相似文献   

5.
The aim of this study is to promote the use of available natural dune sand from desert areas as a partial cement replacement. Binary and ternary combinations of ground dune sand (GDS), Portland cement (PC) and ground granulated blast furnace slag (GGBS) were investigated for their effects on the compressive strength of mortar cured under standard or autoclave curing conditions. The results showed that the compressive strength decreased significantly with increasing GDS and GGBS contents under standard curing. However, with autoclave curing, all of the binary and ternary mixtures yielded mortar with a compressive strength higher than that of the control sample. The autoclave-cured ternary combination of 30% GDS, 50% PC and 20% GGBS showed the highest compressive strength. It is possible to use a PC content as low as 10% since the mixture of 30% GDS, 10% PC and 60% GGBS displayed strength comparable to the control sample.  相似文献   

6.
Economic and sustainability arguments require carefully assessing the potentialities of indigenous resources for the production of mortar and concrete for the construction industry. In Vietnam, significant efforts should be bestowed on urban development, coastal protection and harbour construction works. In a joint Vietnamese-Dutch co-operation program, the practical use for this purpose of relevant resources in Northern Vietnam is assessed experimentally. This paper concentrates on kaolin, which is widely available in this region. The key issues this paper is dealing with are the effects of partial replacement of Portland cement by calcined kaolin in mortar and concrete on compressive strength as well as on durability characteristics of mortar and concrete mixes pertinent to the coastal environment. Workability measures are also mentioned. Data are therefore presented on compressive strength development over a maximum curing period of 180 days of mixes in which the water to binder ratio was varied between 0.40 and 0.53. Moreover, partial replacement was considered in the range from 0% to 30% by weight. The results of this study render possible the assessment of optimum replacement percentages of Portland cement by calcined kaolin, and the associated strength gain. Additionally, this paper reports on the performance aspects of similarly blended mortar and concrete specimens stored for a period of one year in a low concentration of a sodium sulfate solution. It could be concluded that a strength gain due to blending will be accompanied by improved durability in this environment.  相似文献   

7.
Abstract

Three different ways of using fly ash, namely, partial replacement of cement, or sand, or both cement and sand in the cement mortar, were studied in this investigation. The replacement varied from 10 percent to 60 percent by weight. The effects of design parameters such as water‐cement ratio and curing temperature on the replacements were studied. In this paper, strategies of using fly ash in concrete construction were also proposed in order to conserve resources.  相似文献   

8.
This study reports the testing of 12 alkali-activated (AA) mortars and six AA concretes using lightweight aggregates. These tests aimed to explore the significance and limitations of the development of lightweight AA mortar and concrete. Ground granulated blast-furnace slag, which was used as source material, was activated by sodium silicate powder. The main parameter investigated was the replacement level of lightweight fine aggregates to the natural sand. The effect of the water–binder ratio on the compressive strength development was also studied in AA mortars. Initial flow and development of compressive strength were recorded for the lightweight AA mortar. For the lightweight AA concrete, many factors were measured: the variation of slump with elapsed time, the development of compressive strength, splitting tensile strength, moduli of rupture and elasticity, stress–strain relationship, bond strength and shrinkage strain. Test results showed that the compressive strength of AA mortar decreased linearly with the increase of the replacement level of lightweight fine aggregates, regardless of the water–binder ratio. The compressive strength of AA concrete, however, sharply decreased when the replacement level of lightweight fine aggregates exceeded 30%. In particular, the increase in the discontinuous grading of lightweight aggregate resulted in the deterioration of the mechanical properties of AA concrete.  相似文献   

9.
In this study, palm oil fuel ash (POFA) was used as a pozzolanic material in concrete. The POFA was ground to obtain two different finenesses: coarse (CP) and fine (FP). A portion of ordinary type I Portland cement (OPC) was replaced by CP and FP at 10%, 20%, and 30% by weight of binder to cast concrete. Compressive strength, modulus of elasticity, drying shrinkage, and water permeability of concretes containing ground POFA were measured. The results showed that the compressive strength of the concrete increased with the fineness of the POFA. With 10% and 30% replacement of OPC by CP and FP, respectively, the compressive strength of the resulting concrete was as high as that of OPC concrete at 90 days. Moreover, the use of 10–30% of FP as a cement replacement in concrete reduced its drying shrinkage and water permeability. Finally, there was also a strong correlation between the compressive strength and the water permeability of ground POFA concrete.  相似文献   

10.
This study deals with a proposed mix design method for SCC utilizing different properties of coarse aggregate. The work was conducted in three phases, i.e. paste, mortar and concrete to facilitate the mix design process. Initial investigation on cement paste determined the basis for water cement ratio and superplasticizer dosage for the concrete. For the study on mortar, metakaolin (MK) as pozzolan was used at replacement levels of 5%, 10%, 15%, and 20% by weight of cement. Self compactability of mortars was obtained by adding suitable materials such as mineral admixtures and superplasticizer which provided a sufficient balance between flowability and viscosity of the mix. The optimum MK replacement level for cement was 10% from the viewpoint of workability and strength. Flowability of mortar decreased with the use of metakaolin. Moreover, strength of mortar increased when the optimum replacement level of pozzolan was used. Different fresh concrete tests were adopted. The results obtained for fresh concrete properties showed that flowability of concrete increased with increase flowability of mortar. The mixes which contained coarse aggregate with lower volume, small size, and continuous grading affected positively the fresh properties of SCC. Finally, the mix design method used was successful in producing SCC with different coarse aggregate properties.  相似文献   

11.
This research investigates the workability and compressive strength of mortar and concrete, which were mixed with magnetic field treated water (MFTW) and contained fly ash. MFTW was obtained by passing tap water through a magnetic field. Test variables included the magnetic strength of water, fly ash content in place of cement, water-to-cementitious material ratio (W/CM) and curing age.Results show that the compressive strength of mortar samples mixed with MFTW is higher than those prepared with tap water. The best compressive strength increase of concrete is achieved when the magnetic strength of treated water is of 0.8 and 1.2 T. The compressive strength increase of concrete prepared with MFTW is more significant at early age.  相似文献   

12.
Properties of magnesium phospho-silicate cement (MPSC) mortars with different fine aggregates, and different water contents were investigated in the present work. Three types of fine aggregates, natural sand, dead burnt magnesia and alumina particles were used. Two types of hard burnt magnesia powder with MgO content 89.51 and 71.50 wt.% were used as binder. Compressive strength of MPSC mortar with different water/binder ratios were determined at ages of 1, 3, 7, and 24 h. The 3, 7, and 28 day compressive strength and modulus of elasticity were also tested. It was found that the compressive strength of MPSC mortar decreases with the increase of sand content, regardless of sand type. However, the strength reduction of MPSC mortars formed with magnesia and alumina sand was much smaller than that of mortars formed with natural sand. Moreover, in spite of the raw materials, compressive strength and elastic modulus of MPSC decreased with the increase of water/binder ratio at all ages. The hydrate products were analysed by XRD and TG-DTA, and the porosity of MPSC mortar was analysed by MIP. Results showed total porosity increased with the increase of water content. The content of hydrate product of MPSC, phosphate hexahydrate, also increased with the increase of water content. However, it seems that the change of mechanical properties of MPSC is mainly controlled by increase of total porosity which was determined by water content.  相似文献   

13.
Fly ash (FA) acts as a partial replacement material for both Portland cement and fine aggregate. The published information on FA as sand (fine aggregate) replacement material (SRM) is limited and rational guidelines to estimate the compressive strength of concrete are not available. This aspect was investigated and a formula to predict the compressive strength of concrete at 28 day is suggested in this paper. This formula, containing cementing efficiency factor, k, of FA, is useful also when the quantity of FA used is more than that of sand replaced. Application of the formula to the test data in published literature, indicate that it can estimate the compressive strength of concrete containing different levels of sand replacement by fly ash.  相似文献   

14.
Fly ash and oil contaminated sand are considered as the two waste materials that may affect environment. This paper investigated the suitability of producing geopolymer cement mortar using oil contaminated sand. A comparison between physical and mechanical properties of mortar produced using geopolymer and Ordinary Portland Cement (OPC), in terms of porosity, hydration and compressive strength, was conducted. The results showed that heat curing can increase the compressive strength of geopolymer mortar up to 54% compared to ambient curing situation. The geopolymer mortar with 1% of light crude oil contamination yielded a 20% higher compressive strength than OPC mortar containing sand with a saturated surface dry condition. Furthermore, the formation of efflorescence decreased as the level of oil contamination decreased. Moreover, the heat curing method increased the kinetic energy and degree of reaction for geopolymer cement mortar, which cause an increment of the density of the pore system and improving the mechanical properties of the resulting composites. From the results of this study, it was demonstrated that geopolymer mortar has the potential of utilizing oil contaminated sand, and reducing its environmental impacts.  相似文献   

15.
In this study, the effect of cement gypsum type on properties of the properties of cement paste, mortar and concrete mixtures containing high range water reducing admixture (HRWR) was investigated. Two different types of cement prepared from the same clinker but containing either calcium sulfate hemihydrate or dihydrate as retarder were used. The fresh and hardened (compressive strength and drying-shrinkage) properties as well as static and dynamic rheological behavior of the mixtures were investigated. Compared to the mixtures containing dihydtate, the fresh and rheological properties of mixtures were negatively affected when cement-containing hemihydrate was used. However, hemihydrate utilization had a positive influence on the early compressive strength. The adverse effects on fresh properties were more significant in paste mixtures. These negative effects decreased in the mortar and concrete mixtures. The presence of hemihydrate in cement was found to increase the drying-shrinkage.  相似文献   

16.
In this paper the effect of metakaolin addition on the corrosion resistance of cement mortar is studied. A poor Greek kaolin with a low kaolinite content was thermally treated and the produced metakaolin (MK) was ground to the appropriate fineness. In addition, a commercial metakaolin (MKC) of high purity was used. Several mixture proportions were used to produce mortar specimens, where metakaolin replaced either sand or cement. Mortar specimens were then exposed to the corrosive environment of either partial or total immersion in 3.5% w/w NaCl solution. For the evaluation of the performance of metakaolin, the following methods were used: compressive strength, corrosion potential, mass loss, electrochemical measurements of the corrosion rate by the Linear Polarization method, carbonation depth and porosity. It is concluded that metakaolin improves the compressive strength and the 10% w/w addition shows the optimum contribution to the strength development. In addition, the use of metakaolin, either as a sand replacement up to 20% w/w, or as a cement replacement up to 10% w/w, improves the corrosion behavior of mortar specimens, while when metakaolin is added in greater percentages there is no positive effect.  相似文献   

17.
集料-基体协调性对混凝土强度影响的试验研究   总被引:1,自引:0,他引:1  
研究了集料-基体两相协调性对混凝土强度的影响.试验研究了碎石、钢、砂浆、陶粒和加气混凝土5种强度差异较大的集料在3种不同强度等级基体下的混凝土抗压强度及其发展规律.研究结果表明粗集料和砂浆基体对混凝土抗压强度影响十分显著.在基体强度一定时,粗集料强度达到一定程度后再增加对提高混凝土强度作用不大;当集料强度比基体强度低时,单纯通过增大基体强度来提高混凝土强度效果不明显;集料与基体的差异对强度发展规律和混凝土绝对强度有很大影响.只有在两者相互协调的基础上,才能充分发挥集料和基体的作用.  相似文献   

18.
This paper studies the physical properties, compressive strength and drying shrinkage of multi-blended cement under different curing methods. Fly ash, ground bottom ash and undensified silica fume were used to replace part of cement up to 50% by weight. Specimens were cured in air at ambient temperature, water at 25, 40 and 60 °C, sealed with plastic sheeting for 28 days. The results show that absorption and volume of permeable pore space (voids) of blended cement mortars at 28 day under all curing methods tend to increase with increasing silica fume replacement. The compressive strength of blended cement with fly ash and bottom ash was lower than that of Portland cement control at all curing condition while blended cement with silica fume shows higher compressive strength. In addition, the compressive strength of specimens cured with water increased with increasing curing temperature. The drying shrinkage of all blended cement mortar cured in air was lower than that of Portland cement control while the drying shrinkage of blended cement mortar containing silica fume, cured with plastic sealed and water at 25 °C was higher than Portland cement control due to pore refinement and high autogenous shrinkage. However, the drying shrinkage of blended cement mortar containing SF cured with water at 60 °C was lower than that of Portland cement control due to lower autogenous shrinkage and the reduced microporosity of C–S–H.  相似文献   

19.
One of the most important parameters associated with concrete is its compressive strength. Currently, there is no reliable nondestructive testing technique that is capable of robust determination of this parameter. Concrete is a heterogeneous mixture composed of water, cement powder, sand (fine aggregate), rocks of various size or grade (coarse aggregate), and air (porosity). Water and cement powder chemically combine into a cement paste binder which, in due curing time, produces concrete with its specified compressive strength. Compressive strength of concrete is strongly influenced by its water-to-cement (w/c) ratio as well as its coarse aggregate-to-cement (ca/c) ratio. Therefore, if these two parameters are determined using a nondestructive testing technique, then they may be correlated to the compressive strength. Near-field microwave nondestructive testing techniques, employing open-ended rectangular waveguide probes, have shown tremendous potential for evaluating concrete constituent make-up. In this paper, the results of an extensive set of measurements, using these probes, are presented. The results demonstrate that the statistical distribution of the multiple measurements of the magnitude of reflection coefficient of concrete specimens with various constituent make-ups follows two well-known distributions as a function of frequency. It is shown that for the specimens investigated this distribution is Gaussian at 10 GHz and uniform at 3 GHz. Furthermore, the standard deviation of the measured magnitude of reflection coefficient at 10 GHz is shown to correlate well with ca/c ratio, whereas, the mean of this parameter at 3 GHz is correlated well with w/c ratio. Subsequently, these parameters may be used in conjunction with well established formulae or a look-up table to determine the compressive strength of a given concrete specimen  相似文献   

20.
This study assesses the effect of biomass ashes with different finenesses on the compressive strength of blended cement paste. rice husk ash (RHA), palm oil fuel ash (POFA) and river sand (RS) were ground to obtain two finenesses: one was the same size as the cement, and the other was smaller than the cement. Type I Portland cement was replaced by RHA, POFA and RS at 0%, 10%, 20%, 30% and 40% by weight of binder. A water to binder ratio (W/B) of 0.35 was used for all blended cement paste mixes. The percentages of amorphous materials and the compressive strength of the pastes due to the hydration reaction, filler effect and pozzolanic reaction were investigated. The results showed that ground rice husk ash and ground palm oil fuel ash were composed of amorphous silica material. The compressive strength of the pastes due to the hydration reaction decreased with decreasing cement content. The compressive strength of the pastes due to the filler effect increased with increasing cement replacement. The compressive strengths of the pastes due to the pozzolanic reaction were nonlinear and were fit with nonlinear isotherms that increased with increasing fineness of RHA and POFA, cement replacement rate and age of the paste. In addition, the model that was proposed to predict the percentage compressive strength of the blended cement pastes on the basis of the age of the paste and the percentage replacement with biomass ash was in good agreement with the experimental results. The optimum replacement level of rice husk ash and palm oil fuel ash in pastes was 30% by weight of binder; this replacement percentage resulted in good compressive strengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号