首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of low temperature plasma nitriding on the wear and corrosion resistance of AISI 420 martensitic stainless steel was investigated. Plasma nitriding experiments were carried out with DC-pulsed plasma in 25% N2 + 75% H2 atmosphere at 350 °C, 450 °C and 550 °C for 15 h. The composition, microstructure and hardness of the nitrided samples were examined. The wear resistances of plasma nitrided samples were determined with a ball-on-disc wear tester. The corrosion behaviors of plasma nitrided AISI420 stainless steel were evaluated using anodic polarization tests and salt fog spray tests in the simulated industrial environment.The results show that plasma nitriding produces a relatively thick nitrided layer consisting of a compound layer and an adjacent nitrogen diffusion layer on the AISI 420 stainless steel surface. Plasma nitriding not only increases the surface hardness but also improves the wear resistance of the martensitic stainless steel. Furthermore, the anti-wear property of the steel nitrided at 350 °C is much more excellent than that at 550 °C. In addition, the corrosion resistance of AISI420 martensitic stainless steel is considerably improved by 350 °C low temperature plasma nitriding. The improved corrosion resistance is considered to be related to the combined effect of the solid solution of Cr and the high chemical stable phases of ?-Fe3N and αN formed on the martensitic stainless steel surface during 350 °C low temperature plasma nitriding. However, plasma nitriding carried out at 450 °C or 550 °C reduces the corrosion resistance of samples, because of the formation of CrN and leading to the depletion of Cr in the solid solution phase of the nitrided layer.  相似文献   

2.
In this research, the effect of rapid tempering on the microstructure, mechanical properties and corrosion resistance of AISI 420 martensitic stainless steel has been investigated. At first, all test specimens were austenitized at 1050 °C for 1 h and tempered at 200 °C for 1 h. Then, the samples were rapidly reheated by a salt bath furnace in a temperature range from 300 to 1050 °C for 2 min and cooled in air. The tensile tests, impact, hardness and electrochemical corrosion were carried out on the reheated samples. Scanning electron microscopy was used to study the microstructure and fracture surface. To investigate carbides, transmission electron microscopy and also scanning electron microscopy were used. X-ray diffraction was used for determination of the retained austenite. The results showed that the minimum properties such as the tensile strength, impact energy, hardness and corrosion resistance were obtained at reheating temperature of 700 °C. Semi-continuous carbides in the grain boundaries were seen in this temperature. Secondary hardening phenomenon was occurred at reheating temperature of 500 °C.  相似文献   

3.
ABSTRACT

In order to improve both the hardness and corrosion resistance properties of AISI 430F stainless steel, plasma nitriding (PN) and nitrocarburising processes were carried out at different temperatures ranging from 350 to 500°C for 4?h. After PN, the nitrided layer was found to be thicker compared to that obtained by plasma nitrocarburising process. There was an increase in microhardness values by a factor of six to seven compared to the plasma nitrided and nitrocarburised specimens respectively, treated at 500°C. The electrochemical corrosion behaviour of the plasma nitrided and nitrocarburised AISI 430F specimens show that the plasma nitrided and nitrocarburised specimens treated at 400°C for 4?h showed better corrosion resistance and higher surface hardness than the untreated AISI 430F stainless steel specimens. This is mainly attributed to the presence of nitrogen in the modified layer existing as a solid solution in the ferrite phase.

This paper is part of a supplementary issue from the 17th Asia-Pacific Corrosion Control Conference (APCCC-17).  相似文献   

4.
Bipolar electrochemistry produces a linear potential gradient between two feeder electrodes, providing access to the full spectrum of anodic-to-cathodic electrochemical behaviour. A type 420 martensitic stainless steel has been used to investigate microstructure evolution and corrosion behaviour with application of different tempering heat treatments. Tempering treatments at 250°C, 400°C and 700°C revealed the occurrence of pitting corrosion, with treatments at 550°C resulting in general and intergranular corrosion. Cr23C6 was present in all tempering conditions, with Cr7C3 and CrC only observed for tempering at 550°C. The 250°C tempering treatment had the highest corrosion resistance with a hardness value much higher than 500 HV.  相似文献   

5.
ABSTRACT

To investigate the influence of nitrogen on structure and corrosion resistance of Cr15 super martensitic stainless steels (SMSS), two types (N-free and N-0.12%) of specimens were quenched at 1050°C and tempered at different temperatures, and then, optical microscope, transmission electron microscopy, X-ray diffraction, potentiodynamic polarisation, immersion experiments and Kelvin Probe Force Microscope were used to characterize its microstructures and corrosion properties. The experimental results show that the microstructure in the N-free Cr15 super martensitic stainless steel is a biphasic tissue with alternating martensite and austenite distribution while quenched at 1050°C and tempered between 600 and 700°C. The nitrogen addition increases the content of austenite, and changes the austenite morphology significantly into the coarse block and strip distribution. What’s more, micro-galvanic corrosion is formed between austenite and martensite, which deteriorates the corrosion resistance of the SMSS.  相似文献   

6.
Coatings of zirconium oxide were deposited onto three types of stainless steel, AISI 316L, 2205, and tool steel AISI D2, using the ultrasonic spray pyrolysis method. The effect of the flux ratio on the process and its influence on the structure and morphology of the coatings were investigated. The coatings obtained, 600 nm thick, were characterized using x-ray diffraction, scanning electron microscopy, confocal microscopy, and atomic force microscopy. The resistance to corrosion of the coatings deposited over steel (not nitrided) and stainless steel nitrided (for 2 h at 823 K) in an ammonia atmosphere was evaluated. The zirconia coating enhances the stainless steel’s resistance to corrosion, with the greatest increase in corrosion resistance being observed for tool steel. When the deposition is performed on previously nitrided stainless steel, the morphology of the surface improves and the coating is more homogeneous, which leads to an improved corrosion resistance.  相似文献   

7.
Double austenitization (DA) treatment is found to yield the best combination of strength and toughness in both low-temperature as well as high-temperature tempered conditions as compared to single austenitization (SA) treatments. Obtaining the advantages of double austenitization (DA) to permit dissolution of alloy carbides without significant grain coarsening was attempted in AISI 431 type martensitic stainless steel. Structure-property correlation after low-temperature tempering (200 °C) as well as high-temperature double tempering (650+600 °C) was carried out for three austenitization treatments through SA at 1000 °C, SA at 1070 °C, and DA at 1070+1000 °C. While the increase in strength after DA treatment and low-temperature tempering at 200 °C is due to the increased amount of carbon in solution as a result of dissolution of alloy carbides during first austenitization, the increased toughness is attributable to the increased quantity of retained austenite. After double tempering (650+600 °C), strength and toughness are mainly found to depend on the precipitation and distribution of carbides in the microstructure and the grain size effect.  相似文献   

8.
Wear tests of H13 steel with various tempering microstructures were performed under atmospheric conditions at room temperature (RT), 200 °C, and 400 °C. The wear characteristics and wear mechanisms of various tempered microstructures of the steel were focused by investigating the structure, morphology, and composition of the worn surfaces. Under atmospheric conditions at RT, 200 °C, and 400 °C, adhesive wear, mild oxidation wear, and oxidation wear prevailed, respectively. The wear rate at 200 °C was substantially lower than those at RT and 400 °C due to the protection of tribo-oxides. In mild oxidation wear, the tempered microstructures of the steel presented almost no obvious influence on the wear resistance. However, in adhesive wear and oxidation wear, the wear resistance strongly depended on the tempered microstructures of the steel. The steel tempered at 600-650 °C presented pronouncedly lower wear rates than the one tempered at 200-550 or 700 °C. It can be suggested that the wear resistance of the steel was closely related with its fracture resistance.  相似文献   

9.
C.X. Li  T. Bell 《Corrosion Science》2006,48(8):2036-2049
Samples of an AISI 410 martensitic stainless steel were plasma nitrided at a temperature of 420 °C, 460 °C or 500 °C for 20 h. The composition, microstructure and hardness of the nitrided samples were characterised using a variety of analytical techniques. In particular, the corrosion properties of the untreated and plasma nitrided samples were evaluated using anodic polarisation tests in 3.5% NaCl solution and immersion tests in 1% HCl acidic water solution. The results showed that plasma nitriding produced a relatively thick nitrided case consisting of a compound layer and a nitrogen diffusion layer on the 410 stainless steel surface. Plasma nitriding not only increased the surface hardness but also improved the corrosion resistance of the martensitic stainless steel. In the immersion test, nitrided samples showed lower weight loss and lower corrosion rate than untreated one. In the electrochemical corrosion tests, the nitrided samples showed higher corrosion potentials, higher pitting potentials and greatly reduced current densities. The improved corrosion resistance was believed to be related to the iron nitride compound layer formed on the martensitic stainless steel surface during plasma nitriding, which protected the underlying metal from corrosive attack under the testing conditions.  相似文献   

10.
In this study, a tempered martensitic matrix was obtained in a low carbon steel, by applying austenization, quenching and tempering heat treatments. After austenization at 1000°C for 30 minutes, steel samples were quenched in water and then tempered at 200, 540 and 600°C for 30 minutes. Hardness measurements were done and then immersion tests were carried out in a 3.5 wt % NaCl solution for periods ranging between 1–7 days. Weight losses of the samples were determined after each immersion period and microstructural studies were performed on the corroded surfaces. Corrosion rates were calculated using weight loss data and verified by potentiodynamic tests. Results revealed that corrosion behavior of the experimental steels was directly affected by tempering temperature, hardness and microstructure.  相似文献   

11.
In this paper, some results from a study of the erosion‐corrosion resistance of uncoated and aluminized 12% chromium steel in a fluidized‐bed rig are reported. The aims of the research are to establish and compare the erosion‐corrosion resistance of these materials for possible applications as heat exchangers in future power plants, and to obtain an increased understanding on their behaviour and mutual superiority in a range of conditions. Damage to the uncoated 12% chromium steel occurs by an oxidation‐affected erosion process under all the studied conditions, with spallation of scale being the primary mechanism of material wastage. At a temperature of 550°C, the uncoated steel follows the typical angle‐dependence of a brittle material, while, at temperatures above 550°C, it follows an angle‐dependence that is more typical of a ductile material. This change in the angle‐dependence with temperature is related to characteristics, i.e. uniformity, adhesion and density, of the formed oxide scales. The rate of material wastage increases with increase in speed and temperature, due to the development of thicker, more uniform and more dense oxide scales, that promote more severe scale spallation. The erosion‐corrosion behaviour of the aluminized 12% chromium steel changes in the temperature range from 600°C to 650°C. This is due to a shift from a brittle‐like to a ductile‐like angle‐dependence and to a more rapid oxide scale build‐up at temperatures above 600°C. At an impact angle of 30° and at 550°C and 600°C, the prevailing erosion‐corrosion process for the aluminized steel is oxidation‐affected erosion. At 650°C and 700°C for an impact angle of 90°, the primary erosion‐corrosion mode is essentially erosion‐enhanced oxidation. The results of the study have also demonstrated that the Al5Fe2 coating deposited by pack aluminization offers enhanced protection against erosion‐corrosion at shallow impact angles at 550°C and 600°C and at steeper impact angles at 700°C.  相似文献   

12.
C.X Li  T Bell 《Corrosion Science》2004,46(6):1527-1547
AISI 316 austenitic stainless steel has been plasma nitrided using the active screen plasma nitriding (ASPN) technique. Corrosion properties of the untreated and AS plasma nitrided 316 steel have been evaluated using various techniques, including qualitative evaluation after etching in 50%HCl + 25%HNO3 + 25%H2O, weight loss measurement after immersion in 10% HCl, and anodic polarisation tests in 3.5% NaCl solution. The results showed that the untreated 316 stainless steel suffered severe localised pitting and crevice corrosion under the testing conditions. AS plasma nitriding at low temperature (420 °C) produced a single phase nitrided layer of nitrogen expanded austenite (S-phase), which considerably improved the corrosion properties of the 316 austenitic stainless steel. In contrast, AS plasma nitriding at a high temperature (500 °C) resulted in chromium nitride precipitation so that the bulk of the nitrided case had very poor corrosion resistance. However, a thin deposition layer on top of the nitrided case, which seems to be unique to AS plasma nitriding, could have alleviated the corrosion attack of the higher temperature nitrided 316 steel.  相似文献   

13.
Low-temperature salt bath nitriding of heat treated and tempered 13/4 Martensitic stainless steel (13/4HTT) was carried at 450 °C (N450) and 500 °C (N500) for 10 h each. The nitrided samples were characterized by using x-ray diffractometer, field emission scanning electron microscope and optical microscope. The nanohardness and elastic modulus of the cross section of nitrided specimen were measured by nanoindentation test using Hysitron TI950 triboindenter. The nitrided 13/4HTT (N450 and N500) and 13/4HTT specimens were subjected to slurry erosion test in a slurry pot tester. The test was conducted for 48 h, and weight loss was measured after every 6 h. The relative speed of slurry with respect to specimen was 4.55 m/s. It was found that the weight loss due to erosion of the N450 is 83% less than that of 13/4HTT and that of N500 was 92% more than that of 13/4HTT. The erosion mechanism is correlated to the phases present in the specimens. The improvement in the slurry erosion resistance of N450 is due to presence of expanded martensite (\(\alpha_{N}\)-Fe). Increasing the temperature of nitriding to 500 °C led to the decrease in the slurry erosion resistance of N500 due to the formation of brittle CrN phase.  相似文献   

14.
Methods of the X-ray diffraction analysis and electron microscopy were used to study changes in the structural phase state and mechanical properties of bulk-nitrided 08Kh17T steel (0.08 wt % C, 17 wt % Cr, 0.8 wt % Ti, 0.5 wt % Si, 0.8 wt % Mn, 0.025 wt % S, and 0.035 wt % P) upon tempering in the temperature range of 400–700°C. The changes in the mechanical properties of the nitrided steel upon tempering are associated with the predominance of either the solid-solution or precipitation strengthening, i.e., with the presence of martensite in the steel structure at low temperatures of tempering and the precipitation of particles of Cr2N nitrides of different dispersity upon increasing the tempering temperature. The greatest increase in the ultimate tensile strength and yield stress (1.8–2.5 times) at a satisfactory plasticity (no less than 10%) of the bulk-nitrided steel is achieved by tempering bulk-nitrided steel in a temperature range of 600–700°C.  相似文献   

15.
Current supereritical steam power plants operate at 3,600 psi and 1,000°F. If the steam temperature is raised from 1,000 °F (538 °C) to 1,150 °F (621°C), the efficiency increases by 2%. Therefore, study on the high temperature corrosion of power plant materials under ultra-superciritical conditions (USC) is necessary to protect the plant from corrosion. In this study, valve materials of 17% Cr martensitic steels (17Cr steel), Incoloy 901 (1901) and their surface nitrided specimens were exposed to USC of 621 °C and 3600 psi (255 kg/cm2) steam for 200 °C, 400 °C, and 800 h. The oxidation of both 17Cr steel and 1901 under the USC for 800 h is very small due to the formation of a protective thin oxide layer formation on the surface. The USC oxidation of both nitrided specimens were increased due to the decomposition and formation of active nitrogen from the non protective nitrides such as Fe4N, Fe2–3N, and CrN. The oxidation of nitrided 17Cr steel (n17Cr steel) is about two times higher compared to nitrided 1901 (n1901). The surface hardness is improved by more than two times near the surface by nitriding, and the degradation of hardness by USC oxidation is rapid for n17Cr steel, but slow for n1901.  相似文献   

16.
Effects of carbon, nitrogen and phosphorous on the intergranular corrosion and the stress-corrosion cracking of iron Experiments without stress, with constant load, or with constant strain rate were performed in boiling 55% Ca(NO3)2 solution (115°C) to elucidate the effects of carbon, nitrogen and phosphorous on the intergranular corrosion (IC) and stress-corrosion cracking (SCC) of iron. The original material contained 20 to 40 ppm C, 17 ppm N, and 20 ppm P. One batch of this material was normalized only, a second batch was also decarburized up to under 10 ppm C prior to normalizing, and a third batch was decarburized, and then nitrided up to 140 to 220 ppm N prior to normalizing. Some of the specimens were tempered at 550°C for one month. All normalized specimens showed no susceptibility to IC at applied potentials from 800 to 1000 mV (SHE). In contrast, specimens tempered at 550°C were very susceptible to IC, which was observed even at 200 mV after decarburization. Auger-spectra of intergranular fracture surfaces of a tempered specimen produced at liquid-nitrogen temperature revealed grain boundary segregation of P (about 10 atomic %). The as-normalized specimens fractured intergranularly within 1 to 2 h, when held at constant load of 0.8 and 0.9 of ultimate tensile strength (UTS), and 0 mV. By contrast, under identical conditions, the decarburized specimens and the nitrided specimens did not fracture in 30 d. The fracture energy tested with the constant strain-rate method at 0 mV, as compared with experiments in oil, was strongly lowered in the as-normalized specimens and significantly lowered in the nitrided specimens. The values of fracture energy obtained for the decarburized specimens were mostly similar to those in oil at 115°C. Only some of the decarburized specimens showed substantial decreases in fracture energy. However, the decarburized and tempered specimen showed an even larger decrease in fracture energy, with intergranular fracture mode.  相似文献   

17.
In this work, samples of St52 steel were plasma nitrided using an iron screen, in an N2: H2 gas mixture ratio of 4 : 1, at 500 and 550°C for 5, 10 and 15 h. The X-ray diffraction and optical microscopy methods were used for structural characterization of the coatings. Results indicated that the coatings were composed of Fe2–3N and Fe4N phases growing at longer deposition times. Moreover, the Fe2–3N phase was decomposed to Fe4N after 10 h of plasma nitriding. The erosion–corrosion behavior of nitrided coatings and a bare substrate were studied in various impact angles: 30, 45, 60 and 90 degrees. Polarization curves of the coated and uncoated samples were recorded between–900 to 600 mV, as a function of the slurry impact angle. Results showed that an active screen plasma nitriding method significantly enhanced the erosion–corrosion resistance of the St52 steel. Moreover, an impact angle of 30° on the sample surface yielded a lower weightloss whereas increasing the impact angle up to 90° caused more weight-loss due to the brittle characteristic of iron nitride coatings. According to SEM micrographs, by increasing the impact angle up to 90°, the depth of the removed mass increased substantially.  相似文献   

18.
A series of experiments were carried out to study the influence of low temperature plasma nitriding on the mechanical properties of AISI 420 martensitic stainless steel. Plasma nitriding experiments were carried out for 15 h at 350℃ by means of DC- pulsed plasma in 25%N2+ 75%H2 atmosphere. The microstructure, phase composition, and residual stresses profiles of the nitrided layers were determined by optical microscopy and X-ray diffraction. The microhardness profiles of the nitridied surfaces were also studied. The fatigue life, sliding wear, and erosion wear loss of the untreated specimens and plasma nitriding specimens were determined on the basis of a rotating bending fatigue tester, a ball-on-disc wear tester, and a solid particle erosion tester. The results show that the 350℃ nitrided surface is dominated by c-Fe3N and ON, which is supersaturated nitrogen solid solution. They have high hardness and chemical stabilities. So the low temperature plasma nitriding not only increases the surface hardness values but also improves the wear and erosion resistance. In addition, the fatigue limit of AISI 420 steel can also be improved by plasma nitriding at 350℃ because plasma nitriding produces residual compressive stress inside the modified layer.  相似文献   

19.
The low-alloy steel was nitrided in a pure NH3 gas atmosphere at 640 ~ 660 °C for 2 h, i.e., high-temperature gas nitriding (HTGN), followed by tempering at 225 °C, which can produce a high property surface coating without brittle compound (white) layer. The steel was also plasma nitriding for comparison. The composition, microstructure and microhardness of the nitrided and tempered specimens were examined, and their tribological behavior investigated. The results showed that the as-gas-nitrided layer consisted of a white layer composed of FeN0.095 phase (nitrided austenite) and a diffusional zone underneath the white layer. After tempering, the white layer was decomposed to a nano-sized (α-Fe + γ′-Fe4N + retained austenite) bainitic microstructure with a high hardness of 1150HV/25 g. Wear test results showed that the wear resistance and wear coefficient yielded by the complex HTGN plus tempering were considerably higher and lower, respectively, than those produced by the conventional plasma nitriding.  相似文献   

20.
Low pressure plasma arc discharge-assisted nitriding of AISI 304 austenitic stainless steel is a process that produces surface layers with useful properties such as a high surface hardness of approximately 1500 Hv0.1 and a high resistance to frictional wear and corrosion. The phase composition, the thickness, the microstructure and the surface topography of the nitrided layer, as well as its properties, depend essentially on the process parameters. Among them, the processing temperature is the most important factor for forming a hard layer with good wear and corrosion resistance. Nitriding austenitic stainless steel at approximately 420°C for 70 min can produce a thin layer of 7–8 μm with very high hardness and good corrosion resistance on the surface. The microstructure was studied by optical microscopy and both glancing angle and conventional Bragg–Brentano (θ–2θ) symmetric geometry X-ray diffraction (XRD). The formation of expanded austenite was observed. Measurements of the wear depths indicated that the wear resistance of austenitic stainless steel can be improved greatly by nitriding at approximately 420°C using low-pressure plasma-arc source ion nitriding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号