首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2016,42(6):7223-7229
CuO modified Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 (PIN–PMN–PT) ternary relaxor based ferroelectrics with the composition near the morphotropic phase boundary were synthesized by two-step columbite precursor method. The introduction of CuO significantly improved the sinterability of PIN–PMN–PT ceramics, resulting in the full densification of samples at lower sintering temperatures. It also profoundly modified the crystal structure and fracture mode of the ceramics. Properly increasing CuO content led to the disappearance of rhombohedral-tetragonal phase transition, remarkably improved the Curie temperature (Tc), and made the ceramics more relaxorlike. The ternary ceramics doped with 0.25 wt% CuO possessed optimum piezoelectric properties (d33=584 pC/N, d33*=948 pC/N, and kp=0.68), high ferroelectric properties (Ec=9.9 kV/cm, and Pr=33.1 μC/cm2), low dielectric loss (tan δ=0.9%), and wider temperature usage range (Tc=225 °C). The obtained properties are much higher than those of previously reported PIN–PMN–PT based ceramics, indicating that CuO doped PIN–PMN–PT is a promising candidate for electromechanical applications with high performance and wide temperature/electric field usage ranges.  相似文献   

2.
The dielectric and piezoelectric properties were investigated in the (1 ? x)Pb(Hf1?yTiy)O3xPb(Ni1/3Nb2/3)O3 (PNN–PHT, x = 0.05–0.50, y = 0.55–0.70) ternary system. The morphotropic phase boundary (MPB) was determined by X-ray powder diffraction analysis. Isothermal map of Curie temperature (TC) related to the compositions in the phase diagram was obtained. The optimum dielectric and piezoelectric properties were achieved in ceramics with the MPB compositions, with the maxima values being on the order of 6000 and 970pC/N, respectively. Rayleigh analysis was used to study the extrinsic contribution (domain wall motion) in PNN–PHT system, where the extrinsic contribution was found to be ~30% for composition 0.49PNN–0.51PHT(30/70), showing a high nonlinearity.  相似文献   

3.
The dielectric and electrical properties of xPb(Sc1/2Nb1/2)O3yPb(Ni1/3Nb2/3)O3zPbTiO3 (PSNNT 100x/100y/100z) ternary ceramic materials near the morphotropic phase boundary (MPB) were investigated. The MPB follows on almost linear region between PSNNT 58/00/42 and PSNNT 00/68/32 of the binary systems. The maximum electromechanical coupling factor kp=70·7% was found at PSNNT 36/26/38, where ε33T0=3019 and Tc=210°C were obtained. These values are similar to those of the Pb(Sc1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 system and better than those of PZT.  相似文献   

4.
《Ceramics International》2022,48(21):31811-31817
As one of the outstanding piezoelectric materials, relaxor-PbTiO3 single crystal also exhibits promising electro-optic and nonlinear-optic properties. Therefore, it is vital to understand the domain switching kinetics not only for optimizing strain-mediated devices performance but also for fabricating optical waveguides and periodic domain structures in optical applications. In this work, domain switching kinetics in annealed and pre-poled PMN-0.38PT single crystal under different external electric field were studied. Polarization reversal can be accomplished only by c-domain nucleation and growth in the annealed sample where the formation of the ferroelastic domains is hindered. In pre-poled sample, 90° domain switching happened by 90° domain wall reorientation under low electric field while 180° domain switching is accomplished by two-step 90° domain switching and c-domain growth under high electric field. The results are important for modulating domain structure for strain mediated and optical devices.  相似文献   

5.
《Ceramics International》2015,41(7):8367-8376
In this study, (1−x)[0.6Pb(Mg1/3Nb2/3)O3–0.4Pb(Zr0.52Ti0.48)O3]–xBa(Zn1/3Nb2/3)O3; (1−x)PMNZT60/40–xBZN having x=0, 2.5, 5, 7.5, and 10 mol% ceramics were prepared by mixed oxide powder method and sintered using a two-step process. Phase transitions were investigated by XRD, microstructure by SEM, crystal morphology by TEM, the dielectric and ferroelectric properties by capacitance measurement setup and modified Sawyer-Tower circuit, respectively. The dielectric constant and dielectric loss tangent were measured as functions of both temperature and frequency. The XRD results show the phase transition from tetragonal phase to pseudo-cubic phase with addition of BZN in PMNZT system. Grain size of about 1.23–2.42 μm and crystallite size in a range of 421–2152 nm were obtained. The pure-phase 0.6PMN–0.4PZT ceramics show the normal ferroelectric behavior. The 0.95(PMNZT60/40)–0.05BZN and 0.925(PMNZT60/40)–0.075BZN showed a broad and diffused dielectric properties and the dispersive phase transition, indicating the relaxor ferroelectric behavior. The transition temperature in the BZN-modified PMNZT system is seen to decrease from 166 °C in pure PMNZT60/40 to 102 °C and 54 °C with increasing BZN content to 5 and 10 mol%, respectively. In addition, the maximum dielectric constant is decreased with increasing BZN content. The PE hysteresis loop measurements show the change from the normal ferroelectric behavior in PMNZT60/40 ceramic to more relaxor behavior that was induced with BZN addition. These results clearly demonstrated the significance of BZN to the electrical responses of the PMNZT60/40 system.  相似文献   

6.
A systematic investigation of the seeding effects on the mechanochemical synthesis of lead magnesium niobate – lead titanate 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 (PMN–10PT), one of the most studied relaxor-ferroelectric material for electrocaloric applications, is reported. The perovskite crystallisation process was followed by X-ray diffraction using the Rietveld refinement method and transmission electron microscopy. Compared to the mixed-oxides case which requires 143 h of high-energy milling, the milling time needed to obtain a phase-pure PMN–10PT perovskite using PT seeds is reduced almost twice. The presence of PT seeds leads to faster transitions from the amorphous to pyrochlore and to perovskite phases compared to the mixed-oxides case. A sintering study demonstrates, for the first time, that a second, metastable, pyrochlore phase is taking part in the processes of perovskite formation. The PMN–10PT ceramic prepared from the PT-seeded powder exhibits electrocaloric properties comparable to reported values for PMN–10 PT prepared from oxides.  相似文献   

7.
We have investigated the electrocaloric (EC) properties of the ceramic 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3. A variety of samples with different median grain sizes, i.e., 1.0, 2.2 and 4.0?μm, and relative densities of about 96% were prepared using atmospheric sintering at 1200oC for 2, 8 and 16?h. The ceramic material with a median grain size of 2.2?μm exhibited the highest value for the EC temperature change, i.e., 1.27?K at 60?kV?cm?1, measured with a high-resolution calorimeter. This value is 25 and 19% higher than the value for the ceramics with the finer and the coarser grains, respectively.  相似文献   

8.
High Curie-temperature 0.63Bi(Mg1/2Ti1/2)O3–0.37PbTiO3 (BMT–PT) films were fabricated on Pt(111)/Ti/SiO2/Si substrates by the sol–gel spin-coating method. The oriented growth behavior of thin films was controlled by introducing a PT seed layer onto the platinum electrode surface. The effect of the annealing method of the PT seed layer on the orientation behavior and electrical properties of BMT–PT films was investigated. It was found that BMT–PT thin film exhibits higher (100) orientation degree when the PT seed layer was treated by rapid thermal annealing. The dielectric permittivity increases while the remanent polarization and coercive field decrease with increasing the (100) orientation degree. These results were explained according to the relationship between the preferential orientation and the spontaneous polarization directions of the films.  相似文献   

9.
《Ceramics International》2016,42(4):4893-4898
Dielectric relaxation properties of the ternary relaxor-based ferroelectric 0.24Pb(In1/2Nb1/2)O3–0.49Pb(Mg1/3Nb2/3)O3–0.27PbTiO3 single crystal have been investigated as a function of temperature (300–570 K) in the frequency range from 100 Hz to 100 kHz. It was found that the variation of the permittivity maximum temperature Tm with frequency obeys the Vogel–Fulcher relationship. The high-temperature (T>Tm) side of the dielectric permittivity deviated from the Curie–Weiss law, but can be described by the Lorenz-type relationship. The coercive field obtained from the polarization hysteresis loops gradually decreases with increasing temperature, and the remnant polarization persists above Tm due to the existence of polar nanoregions (PNRs).  相似文献   

10.
Ba(Co1/3Nb2/3)O3(BCN) has a 1:2 ordered hexagonal structure. A large amount of the liquid phase, which contains high concentrations of Ba and Nb ions was found in the BCN ceramics. Q-values of BCN increased with increasing sintering temperature; however, it significantly decreased when the sintering temperature exceeded 1400 °C. The presence of a large amount of liquid phase could be responsible for the decrease of the Q-value. For (1−x)Ba(Co1/3Nb2/3)O3xBa(Zn1/3Nb2/3)O3 [(1−x)BCN–xBZN] ceramics, the 1:2 ordered hexagonal structure was observed in the specimens with x⩽0.3 and the BaNb6O16 second phase was found in the specimens with x⩾0.6. Grain growth, which is related to the BaNb6O16 second phase occurred in the specimens with x⩾0.5. In this work, the excellent microwave dielectric properties of τf=0.0 ppm/°C, εr=34.5 and Q×f=97,000 GHz were obtained for the 0.7BCN–0.3BZN ceramics sintered at 1400 °C for 20 h.  相似文献   

11.
Although rare earth neodymium (Nd) doping is common in Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT) single crystals, it is rarely reported in PMN–PT ceramics. To explore the effect of Nd doping on PMN–PT ceramics, PMN–30PT:xNd3+ (x = 0%, 1%, 2%, and 3%) relaxor ferroelectric ceramics were fabricated using a solid-state method via two-step sintering. An enhanced piezoelectric charge coefficient (d33) of ∼870 pC/N and a high piezoelectric strain coefficient (d33*) of ∼1025 pm/V were achieved for x = 2%. Through Rayleigh analysis of polarization–electric field (PE) hysteresis loops under small electric fields, it was found that the dielectric property was mainly influenced by the intrinsic contribution (local lattice distortion). Furthermore, by investigating domain configurations, high piezoelectric properties were found to be associated with the domain size reduction and local structural heterogeneity. The results indicate that the PMN–30PT:xNd3+ ceramics is a promising material for electronic devices, and that rare earth Nd doping is an efficient strategy for improving the electronic performance of Pb-based relaxor ferroelectrics.  相似文献   

12.
Transparent (Pb,La)(Mg1/3Nb2/3)O3–PbTiO3 (PLMNT) ceramics were prepared by two stage sintering method. Two different domain structures were formed in PLMNT transparent ceramics with the same composition by changing the cooling rate. Large strip-like domain structure was formed in rapidly-cooled samples, while fine fingerprint-type domain structure was formed in slowly-cooled samples. The large domain structure in transparent PLMNT ceramics caused light scattering and decreased the transmittance. The cut-off wavelength was also red-shifted for PLMNT ceramics with large domain structure, which was attributed to the inner stress in the ceramics. PLMNT ceramics with different domain structures showed different electrical properties: Compared with PLMNT ceramics with large domain structure, PLMNT ceramics with fine domain structure had smaller coercive field, larger electric field induced strain and lower freezing temperature (TVF).  相似文献   

13.
The doping of ZnO is efficient to improve the piezoelectric property and thermal stability of Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT) based ceramics. However, the underlying physics, especially the local domain structures of the ZnO modified PMN–PT ceramics, which is strongly associated with the electric properties, is not clear yet. In this paper, we investigated the local domain structures and their evolution as a function of x in PMN–0.32PT:xZnO ceramics. It was found that, the domain evolution is mainly caused by the growth of grain size induced by the sintering aiding effect of ZnO at < 0.04, and the domain evolution can be attributed to the phase transition induced by the partial replacement of Mg2+ by Zn2+ in the B-site of PMN–PT lattice at > 0.06. Furthermore, we also investigated the domain structure evolution as functions of temperature and local external electric field in PMN–0.32PT:0.06ZnO ceramics, which exhibited superior piezoelectric property relative to other compositions. We found that the irregular nanodomains are more stable at high-temperature range, and the regular non-180° domains exhibited more complex rotation behavior under local electric field, which probably leads to the thermal stability and piezoelectric property enhancement in the ZnO-modified PMN–0.32PT ceramics.  相似文献   

14.
Crystallographic texturing of ferroelectric ceramics is an established method of inducing single crystal-like properties in a ceramic material via epitaxial grain growth according to the template used, otherwise known as Templated Grain Growth (TGG). The piezoelectric enhancement is dependent on the degree of TGG throughout the ceramic, which is closely linked to the tape casting parameters and sintering conditions. Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) perovskite ferroelectrics with morphotropic phase boundary compositions using 3 vol% BaTiO3 templates were used for analysis. The blade gap and template size have the greatest impact on the overall grain alignment. The varying degrees of template alignment is related to the different enhancements of TGG and the correlating piezoelectric d33 and d*33. The highest piezoelectric property was demonstrated in PMN-31PT with Lotgering factor of 93% where d33 = 1020 pC/N and d*33 = 1420 pm/V were achieved.  相似文献   

15.
Electrocaloric (EC) cooling elements in the form of multilayers (MLs) were prepared. The elements consist of five layers of the relaxor-ferroelectric 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3, about 60 μm thick, with internal platinum electrodes and exhibiting a dense, uniform microstructure with a grain size of 1.7 μm. The largest temperature change ΔTEC of 2.26 K was achieved at an electric field (E) of 100 kV cm−1 and at 105 °C, measured by a high-resolution calorimeter. These results agree well with the indirect measurements. The EC coefficient, ΔTECE, obtained for the MLs, is similar to the value obtained for bulk ceramics of the same composition. The ΔTEC values above 2 K over a broad temperature range from 75 to 105 °C make the ML elements suitable candidates for EC cooling devices at significantly lower voltages than bulk ceramic plates with comparable dimensions and mass.  相似文献   

16.
《Ceramics International》2016,42(8):9347-9353
Ceramic materials were sintered from powders of the NdFeO3–Pb(Fe1/2Nb1/2)O3–PbTiO3 (NF–PFN–PT) ternary system synthesized by the conventional solid reaction method and their multiferroic properties investigated. The structure, electric and magnetic properties of the ternary system have been investigated. The introduction of Pb(Fe1/2Nb1/2)O3 into the NdFeO3–PbTiO3 binary system can effectively increase its electric properties. The ternary system exhibits enhanced piezoelectric property with optimal piezoelectric constants d33=143 pC/N, reduced coercive fields EC=5.78 kV/cm and remnant polarization Pr=12.8 μC/cm2 for 0.10NF–0.56PFN–0.34PT, near tetragonal phase region. The Curie temperature (TC) of the NdFeO3–Pb(Fe1/2Nb1/2)O3–PbTiO3 ceramics varies in the range from 108.7 °C to 67.9 °C. The magnetic hysteresis loops show that the ternary system is paramagnetic originating from canting of paramagnetic sublattices in NF–PFN–PT, due to the rare earth ions Nd3+ influencing on the exchange interaction between Fe3+ ions at the octahedral sites.  相似文献   

17.
There is a great demand to develop ferroelectric ceramics with both high piezoelectric coefficient and broad temperature usage range for emerging electromechanical applications. Herein, a series of Sm3+-doped 0.25Pb(Mg1/3Nb2/3)O3-(0.75−x)PbZrO3-xPbTiO3 ceramics were fabricated by solid-state reaction method. The phase structure, dielectric and piezoelectric properties were investigated, where the optimum piezoelectric coefficient d33 = 745 pC/N and electromechanical coupling factor k33 = 0.79 were obtained at the morphotropic phase boundary composition x = 0.39, with good Curie temperature TC of 242°C. Of particular importance is that high-temperature stability of the piezoelectric and field-induced strain was obtained over the temperature range up to 230°C for the tetragonal compositions of x = 0.40. The underlying mechanism responsible for the high piezoelectricity and temperature stability is the synergistic contribution of the MPB and local structural heterogeneity, providing a good paradigm for the design of high-performance piezoelectric materials to meet the challenge of piezoelectric applications at elevated temperature.  相似文献   

18.
(1−x)Pb(Mg1/3Nb2/3)-xPbTiO3 (PMN-xPT) ceramics with x ranging from 0.1 to 0.3 were synthesized by solid-state reaction method. X-ray diffraction, dielectric and ferroelectric property characterizations were systematically investigated. As x rises, the PMN-xPT transitions from a cubic to a rhombohedral phase, resulting in an enhancement in ferroelectricity. Our findings show that the electrostrain and longitudinal electrostrictive coefficient Q33 both increase and then decrease within a critical region located between the depolarization temperature TFR and Tm (corresponding to the maximum permittivity), demonstrating strong temperature-dependent characteristics. In x = 0.2, the maximum Q33 of 0.0361 m4/C2 is obtained, and a phase diagram of studied system is built. Our findings not only shed light on the phase evolution in this system but also reveal a strong temperature-dependent electrostrictive effect that can be used to improve electrostrains in PMN-based solid solutions if the critical region can be regulated to a suitable temperature region using engineering strategies.  相似文献   

19.
Ceramics of the xPb(Zn1/3Nb2/3)O3–(1 ? x ? y)Pb(Yb1/2Nb1/2)O3yPbTiO3 (PZN–PYN–PT) ternary system were synthesized using a modified two-step columbite precursor method which can effectively suppress the pyrochlore phase. A morphotropic phase boundary (MPB) region, separating tetragonal and rhombohedral phases in the ternary systems has been determined. The electric properties of the compositions near MPB region were investigated. Dielectric response exhibits relaxor-like characteristics with broad dielectric peaks and dispersive dielectric behavior with respect to frequency and temperature. The phase diagram of the 0.45PZN–(0.55 ? y)PYN–yPT pseudo-binary system in the composition range of 0.15 < y < 0.35 was established based on dielectric measurements. The optimal properties were achieved in the MPB composition of 0.52PZN–0.21PYN–0.27PT with piezoelectric coefficient d33, dielectric permittivity ε′, planar electromechanical coupling kp, dielectric loss tan δ, coercive field Ec, remnant polarization Pr, and TC being of 558 pC/N, 2065, 62%, 0.2%, 19.88 kV/cm, 31.44 μC/cm2 and 259.5 °C, respectively, showing potential usage in high-temperature electromechanical applications.  相似文献   

20.
Dielectric ceramics are one of the most important electrical insulators because of their excellent electrical stability and nonconducting properties. In this work, new complex perovskite solid solutions, (1−x)Pb(Mg1/2W1/2)O3xPbHfO3 [(1−x) PMW–xPHf] (0.00 ≤  0.04), were successfully synthesized in the form of ceramics by the solid-state reaction method and sintering process. The X-ray diffraction results indicate that a single perovskite phase with antiferroelectric (AFE) orthorhombic Pmcn symmetry is formed for < 0.04 which corresponds to the PMW-type solid solution (SS-PMW). For the composition = 0.04, however, a small amount (about 1%) of ferroelectric orthorhombic C2mm phase that arises from the PHf-type solid solution (SS-PHf) was found to coexist with the Pmcn phase (99%). The dielectric measurements show that the AFE-paraelectric phase transition temperature TC of the (1−x)PMW–xPHf ceramics increases from 38.2°C (= 0) to 40.1°C (= 0.03) with the increasing PHf content, indicating a slightly enhanced AFE ordering degree. The studied materials show a relatively low dielectric constant (~102), a low dielectric loss (~10−2), a high breakdown field strength (~140 kV/cm), and a linear electric field dependence of polarization at room temperature, which make them a new candidate for potential applications as ceramic insulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号