首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Nano-sized blue solid solutions ZnxMg0.5?xCo0.5Al2O4 (x?=?0–0.5) have been synthesised by the Pechini method. Single-phase ZnxMg0.5?xCo0.5Al2O4 with crystallite size of ~40?nm was identified by XRD measurement. The TG-DSC results indicated that the phase formation temperature of ZnxMg0.5?xCo0.5Al2O4 increased with the substitution of Zn2+/Mg2+?→?Co2+ proceeding. The UV–vis spectra illustrated that the Zn0.3Mg0.2Co0.5Al2O4 pigment displayed the most intensive blue colour with the strongest absorbance appearing within the visible region. The FT-IR spectra suggested that the inversion degree of ZnxMg0.5?xCo0.5Al2O4 pigment reduces with the increase of Zn2+ rather than Mg2+, enabling to control the pigment colour by tuning the Zn2+ content. The FE-SEM images showed an irregular shaped morphology of ZnxMg0.5?xCo0.5Al2O4 crystal, different from the cubic-like morphology of CoAl2O4 crystal. The XPS results illustrated that the inversion of pure CoAl2O4 pigment is larger than that of Zn0.3Mg0.2Co0.5Al2O4. Both Zn0.2Mg0.3Co0.5Al2O4 and Zn0.3Mg0.2Co0.5Al2O4 show commercial potential in pigments application.  相似文献   

2.
The properties of spinel with Mg0.1Co0.9Al2O4 composition obtained by precipitation of hydroxides from aqueous solutions of magnesium, aluminum, and cobalt nitrates and calcination of the residue at a temperature of 500–1000°C were investigated. The results on cobalt metallization on porcelain articles decorated with cobalt paint produced by the Gzhel Company and paint synthesized from Mg0.1Co0.9Al2O4 spinel with an additive of cobalt oxide are presented. It was established that at a firing temperature of 1350–1380°C. the synthesized paint exhibits the first signs of cobalt metallization at a concentration of 15 mg/cm2. whereas in the paint from the Gzhel Company, cobalt metallizes at a concentration of 5 mg/cm2.Translated from Steklo i Keramika, No. 3, pp. 12–14, March, 1996.  相似文献   

3.
Yun Zhao  Qingze Jiao  Ji Liang 《Carbon》2007,45(11):2159-2163
Layered double hydroxides with different components but similar iron content such as Fe0.1Mg2Al0.9, Fe0.1Zn2Al0.9 and Fe0.1Cu2Al0.9 were prepared using a coprecipitation reaction. Then mixed oxides were obtained by calcination of these layered double hydroxide precursors, and their catalytic activities were examined during synthesis of various carbon nanostructures. It was found that single-walled carbon nanotubes were synthesized using a Fe0.1Mg2Al0.9 mixed oxide catalyst, while multi-walled carbon nanotubes and carbon nanofibers resulted from Fe0.1Zn2Al0.9 and Fe0.1Cu2Al0.9 mixed oxides as catalysts, respectively.  相似文献   

4.
《应用陶瓷进展》2013,112(4):234-239
Abstract

In the present study, the effect of temperature and oxidising agents such as Fe2O3 and Co3O4 on physical and mechanical properties of glass foam is investigated. The glass foam is made of panel glass from dismantled cathode ray tubes and SiC as a foaming agent. In the process, powdered waste glass (mean particle size below 63 μm) in addition to 4 wt-% SiC powder (mean particle size below 45 μm) are combined with Fe2O3 and Co3O4 (0·4, 0·8 and 1·2 wt-%) have been sintered at 950 and 1050°C. The glass foamed containing 1·2 wt-% Co3O4 has good physical properties, with porosity more than 80% and bending strength more than 1·57±0·12 MPa. However, by adding different amounts of Fe2O3 in comparison with samples without iron oxide, little changes in porosity and strength are obtained.  相似文献   

5.
Cobalt substituted Mg–Mn nanoferrites with formulae Mg0.9Mn0.1CoxFe2?xO4, x=0.0, 0.1, 0.2 and 0.3, have been synthesized for the first time by the solution combustion technique. The effects of Co2+ ions on the dc resistivity, dielectric constant and dielectric loss tangent of Mg–Mn nanoferrites at room temperature are presented in this paper. X-ray diffraction confirmed the formation of a single phase spinel structure. Particle size was found to increase, 20.9–23.9 nm, with increasing Co2+ concentration. The dc resistivity was increased by two order of magnitude with substitution of Co2+ ions while the dielectric constant was found to be decreasing with the increasing concentration of cobalt ions. The value of dc resistivity obtained for Mg0.9Mn0.1Fe2O4 nanoferrite in our work is greater than the value obtained for the same composition prepared by the conventional ceramic technique. Further, the dielectric constant and dielectric loss tangent were observed to be decreasing with the increase in frequency.  相似文献   

6.
《Ceramics International》2023,49(8):12551-12562
Magnesium aluminate (MgAl2O4) spinel has grasped considerable attention in high-temperature application by right of its excellent properties. However, the poor sintering behavior of MgAl2O4 is detrimental to its further development. In the present work, the application of isostructural heterogeneous nucleation method provides a novel idea for optimizing the sintering behavior of refractory materials. A series of (1-x)MgAl2O4-xMg2TiO4 (x = 0, 0.02, 0.04, 0.06, 0.08, and 0.1) spinel solid solutions with a present ration of components were fabricated from light calcined magnesia, reactive alumina and pre-preparation Mg2TiO4. The effect of Mg2TiO4 heterogeneous nucleating agent on the crystalline phase, densification, and microstructure evolution of MgAl2O4–Mg2TiO4 spinel solid solutions was studied. The XRD, XPS, and EDS results showed that Mg2TiO4 entered the lattice of MgAl2O4 to form a spinel solid solution, and the heterovalent substitution process was identified, where Ti4+ and Mg2+ ions of larger radius in the Mg2TiO4 replaced the Al3+ of smaller radius in the MgAl2O4. For the sample at x = 0.08, the spinel solid solutions exhibited the optimized densification with a relative density of 93.3%, an apparent porosity of 1.2%, and a compressive strength of 84.5 MPa. A significant increase in densification was related to the lattice distortion induced by ion size mismatch during the heterovalent substitution, thus accelerating the diffusion rate of Mg2+ and Al3+ ions in the spinelisation state. Moreover, the solid solubility content of Ti4+ in the MgAl2O4–Mg2TiO4 spinel solid solutions had a significant effect on the grain morphologies. The Mg2TiO4 heterogeneous nucleating agent significantly increased the spinelisation rate of MgAl2O4 spinel with negligible effect on densification.  相似文献   

7.
Ceramic samples of Na0.55Co0.9M0.1O2 (M = Sc, Ti, Cr–Zn, Mo, W, Pb, Bi) solid solutions are synthesized using the solid-phase method; their crystal structure parameters are determined; their microstructure, thermal expansion, thermal and electrical conductivity, and thermal e.m.f. are studied; and the values of their power factor and thermoelectric figure of merit are calculated. It is revealed that Na0.55Co0.9M0.1O2 cobaltites are p type conductors with the linear thermal expansion coefficient (LTEC) changed within limits of (12.2–16.2) × 10–6 K–1. The effect of the substitution of other metal cations for cobalt cations in Na0.55CoO2 on the parameters of the crystal structure, as well as the physicochemical and functional properties of Na0.55Co0.9M0.1O2 solid solutions, which are formed, is analyzed. It is shown that ceramic samples of the Na0.55Co0.9Cr0.1O2 and Na0.55Co0.9Bi0.1O2 compositions have the maximal power factor values among those studied at 0.917 and 1.018 mW/(m K2), respectively, at a temperature of 1100 K.  相似文献   

8.
In this study, a blue-green pigment has been prepared by partially replace Co2+ and Cr3+ in CoCr2O4 spinel structure with Mg2+ and Al3+ using a gel casting method The gel precursor was calcined at various temperatures (900–1400 °C) to obtain Mg0.5Co0.5CrAlO4 spinel pigment. Combining the Rietveld refinement method of XRD and peak fitting of XPS high-resolution spectra, the relationships between the cation distributions (Co2+, Mg2+, Al3+, and Cr3+) in the tetrahedron and octahedron of the spinel structure and the calcination temperature were examined. In the octahedron, the contents of Co2+ and Al3+ decreased with increasing calcination temperature, and the Mg2+ and Cr3+ contents exhibited the opposite trend. The bond lengths of A-O and B–O change with increasing calcination temperature, thereby leading to a change in the unit cell. The optical performance of the pigments was investigated via UV–vis and CIE L*a*b* spectrophotometry, and the study shows that the blue-green hue of the pigment powder is caused by the absorption at υ3~υ8 (370 nm–640 nm) in the visible light region. The varied contents of Co2+ and Cr3+ in the spinel structure among calcination temperatures cause the absorption spectrum intensity change, thereby resulting in various blue-green tones. This study lays the foundations for subsequent investigations of colour modification in MgxCo1-xAlyCr2-yO4 spinel.  相似文献   

9.
《Ceramics International》2022,48(11):15116-15123
Beryllium-magnesium aluminate (Be0.1Mg0.9Al2O4 and Be0.2Mg0.8Al2O4) nanoparticles are synthesized by a coprecipitation method and sintered using Spark Plasma Sintering (SPS) to achieve near full density ceramics with grain sizes at the nanoscale. The sintered nanoceramics display grain sizes ranging from 14 to 33 nm, which are analyzed for optical transmission, Vickers hardness, and cation site inversion. When compared to Be-free MgAl2O4 nanoceramics, both Be0.1Mg0.9Al2O4 and Be0.2Mg0.8Al2O4 show transmissions ~30% lower at wavelength in the infrared range. The samples show a Vickers hardness of ~19.2 GPa with no apparent dependence on grain size. These values are consistently lower to those reported for beryllium-free MgAl2O4 spinel with similar grain size. 27Al and 9Be Nuclear Magnetic Resonance (NMR) spectroscopy reveals that beryllium does not have a significant effect on cationic site inversion in the spinel and, similar to beryllium-free MgAl2O4, inversion remains solely a function of grain size. The results indicate beryllium ions form solid-solutions with MgAl2O4 spinel structure and do not alter the grain boundaries significantly enough to influence the mechanical properties of nanocrystalline ceramics.  相似文献   

10.
The Mg2?xAl4+1/2xLi1/2xSi5O18 (0.1≤x≤1) ceramics with the substitution of (Li1/2Al1/2)2+ for Mg2+ were synthesized by the sol–gel method. The characterization of the modified cordierite included X-ray diffraction, SEM, EDS and infrared radiation. The crystal structure of Mg2Al4Si5O18 with the substitution of (Li1/2Al1/2)2+ for Mg2+ changed and the amount of secondary phase increased with increasing the x value from 0.1 to 1. High infrared emissivity over 0.9 in the band of 8–14 μm at room temperature was obtained in Mg2?xAl4+1/2xLi1/2xSi5O18 (x=0.1). The material based on cordierite with x=0.1 sintered at 1200 °C maintained a single phase, compact microstructure and good infrared emissivity with potential use in infrared heating.  相似文献   

11.
The effect of minor additions of excess MgO and PbO on the sintering characteristics, microstructure development and dielectric properties of perovskite-based Pb(Mg1/3Nb2/3)O3–PbTiO3 solid solutions was investigated. Both MgO and PbO are compatible with the Pb(Mg1/3Nb2/3)O3-based solid solutions and thus, these phases co-exist with one another during sintering at elevated temperatures. On sintering a solid solution composition Pb[(Mg1/3Nb2/3)0.9Ti0.1]O3 with minor additions of MgO, the excess MgO remained as a discrete phase in the ceramics at temperatures up to 1230 °C and inhibited grain growth. Above this temperature, MgO combined with the solid solution to form a liquid phase, which caused an enhancement of the densification process. On sintering the solid solution with excess PbO, a low-temperature melting PbO-rich liquid phase was formed, which promoted the densification process with inhomogeneous grain growth. Simultaneous additions of 1.0 wt.% MgO and 2.0 wt.% PbO to the Pb[(Mg1/3Nb2/3)0.9Ti0.1]O3 solid solution and sintering the resulting material at 1000 °C for 3 h led to the formation of a dense and homogeneous microstructure consisting of evenly distributed grains with an average grain size of 10 μm. The peak dielectric constant of this composition (at ≈38 °C), measured at a frequency of 1 kHz, was 18,000 with a dissipation factor of <2%.  相似文献   

12.
《Ceramics International》2020,46(11):18734-18741
Ca2Mg2Al28O46 consists of platelet or platelet-like structural features derived from CaAl12O19. However, its application in dense structural materials is limited due to its poor sinterability and loose structure. In this work, Ca2Mg2Al28O46 ceramic was fabricated by solid-state reaction sintering, and the effects of MnO addition on the densification and thermal properties were investigated at 1600-1750 °C. The results showed that the Mn2+ solid dissolved into the Ca2Mg2Al28O46 lattice by the isovalent substitution of Mg2+ at 1650 °C, causing the grain morphology to change from hexagonal to equiaxed and resulting in a distorted magnetoplumbite structure. At 1700 °C, the solid solution reaction accelerated the densification, with the apparent porosity decreasing from 32.5% to 8.4% when 3 wt% MnO is added, promoted grain growth and pore discharge by increasing the number of lattice defects, grain boundary migration rate and in-situ stress. The enhanced thermal expansion coefficient and thermal conduction were mainly due to lattice expansion and grain coarsening. Moreover, the formation of trace amount of the secondary phase Mg1-xMnxAl2O4 also contributed to the improvement in the thermal properties.  相似文献   

13.
《Ceramics International》2016,42(4):4748-4753
The effect of substitution of diamagnetic Al3+ and In3+ ions for partial Fe3+ ions in a spinel lattice on the magnetic and microwave properties of magnesium–manganese (Mg–Mn) ferrites has been studied. Three kinds of Mg–Mn based ferrites with compositions of Mg0.9Mn0.1Fe2O4, Mg0.9Mn0.1Al0.1Fe1.9O4, and Mg0.9Mn0.1In0.1Fe1.9O4 were prepared by the solid-state reaction route. Each mixture of high-purity starting materials (oxide powders) in stoichiometric amounts was calcined at 1100 °C for 4 h, and the debinded green compacts were sintered at 1350 °C for 4 h. XRD examination confirmed that the sintered ferrite samples had a single-phase cubic spinel structure. The incorporation of Al3+ or In3+ ions in place of Fe3+ ions in Mg–Mn ferrites increased the average particle size, decreased the Curie temperature, and resulted in a broader resonance linewidth as compared to un-substituted Mg–Mn ferrites in the X-band. In this study, the In3+ substituted Mg–Mn ferrites exhibited the highest saturation magnetization of 35.7 emu/g, the lowest coercivity of 4.1 Oe, and the highest Q×f value of 1050 GHz at a frequency of 6.5 GHz.  相似文献   

14.
Al and/or Mg-substituted Li[Ni0.8Co0.1Mn0.1−xyAlxMgy]O2 were prepared by a co-precipitation method and characterized by X-ray diffraction with Rietveld refinement, thermogravimetric analysis, differential scanning calorimetry (DSC), and electrochemical measurements. The Rietveld refinement results show that cation mixing of Al and/or Mg-substituted Li[Ni0.8Co0.1Mn0.1−xyAlxMgy]O2 was reduced with increased doping amounts of Al and Mg. The Al and/or Mg substitution in Li[Ni0.8Co0.1Mn0.1]O2 also resulted in improved electrochemical cycling behavior, structural stability, and thermal stability compared to pristine Li[Ni0.8Co0.1Mn0.1]O2. The improvements of electrochemical and thermal properties resulted from the stabilized host structure by Al and/or Mg incorporation into Li[Ni0.8Co0.1Mn0.1]O2.  相似文献   

15.
Solid solutions Mg0.1Al1.8Ti1.1O5 and Mg0.5AlTi1.5O5 were obtained by reaction sintering of mixtures of the binary oxides at 1350–1600 °C using different precursor powders. For the composition Mg0.1Al1.8Ti1.1O5, ceramics sintered at 1400–1500 °C have high relative density (⩾90%), reduced grain size (2–6 μm), low thermal expansion (−0.8 to 0.3×10−6 K−1 in the range 200–1000 °C) and reproducible expansion behaviour. At higher temperature, grain size rapidly increases owing to anisotropic and exaggerated grain growth (EGG) resulting in severe microcracking. Microstructure evolution is affected by the nature of the starting oxides, in particular for what concerns the onset temperature of EGG, the size and the fraction of abnormal grains. For the composition Mg0.5AlTi1.5O5, EGG already takes place at 1350 °C and materials with grain size < 5 μm are difficult to obtain by conventional reaction sintering. Large grained samples (>10 μm) of both compositions show a reduced hysteresis and complex thermal expansion behaviour. In particular, heating to 1000 °C results in a significant increase in specimen size on return to room temperature. Repeated thermal cycling leads to an increase of the hysteresis.  相似文献   

16.
《Ceramics International》2020,46(2):1442-1447
Porous ceramic materials have been broadly applied in various fields due to their multifunctional properties. Optimization of their microstructural characteristics, such as pore morphology, total porosity, and pore size distribution, which determine various properties of the final products, is crucial to improve their performances and thus extend their applications. In this study, single-phase porous MgAl2O4 materials were fabricated by direct foaming–gelcasting. With an increase in the foam volume from 260 to 350 mL, the total porosity and pore size of the porous ceramic increased, and its microstructure varied from mostly closed cells to open cells containing interconnected large pores (40–155 μm) and small circular windows (10–40 μm) in the ceramic skeleton. The total porosity could be tailored from 84.91% to 76.08% by modulating the sintering temperature and foam volume and the corresponding compressive strengths were in the range of 2.8–15.0 MPa. The compressive strength exhibited a power-law relationship with the relative density with indices of approximately 3.409 and 3.439, respectively. Porous MgAl2O4 ceramics exhibited low dielectric constants in the range of 1.618–1.910 at room temperature, which are well matched with theoretical calculations on account of a modified Bruggeman model. The porous MgAl2O4 ceramics with good mechanical and dielectric properties controlled easily by various sintering temperatures and foam volumes are promising for practical applications.  相似文献   

17.
《Ceramics International》2020,46(1):678-684
Lightweight MgAl2O4 spinel ceramic foams with high mechanical strength and good dielectric properties were prepared with a direct foam-gelcasting method using MgAl2O4 and TiO2 (rutile phase, as sintering aid) powders. The effects of calcination temperature and foam volume on bulk density, apparent porosity, and on the mechanical and dielectric properties of the ceramic foams were investigated. Tailored porosity (75.14–82.46%), pore size (10–200 μm), dielectric constant (1.66–2.05), and compressive strength (4.0–14.3 MPa), were obtained based on the change of the foam volume in the foamed slurries, and the calcination temperature of porous ceramics. The compressive strength and dielectric constant of the as-manufactured spinel foam with a porosity of ~75.14% was as high as 14.3 MPa and 2.05, respectively. The spinel ceramic foam which had a porosity of 81.84% was prepared with a foam volume of 350 mL and a sintering temperature of 1500 °C, and exhibited heterogeneous pore structures, whereby large and open spherical cells involved in small circular windows on the internal walls with a mean pore size of ~66.26 μm and a grain size of ~8 μm. The experimental dielectric constant matches well with that calculated by the modified Bruggeman model. The dependence of the mechanical strength on the relative density can be represented by the Gibson and Ashby model. The fitted index values of the power relationship were 3.504 and 3.533, compared to the theoretical value of 1.5. The ceramic foam can potentially become a new type of electromagnetic wave-transmitting radome material due to its low dielectric constant (1.66–2.05) and dielectric loss (0.0026–0.006) values.  相似文献   

18.
The hydrogel of the mixed oxide Al2O3-30% Y0.1Zr0.9O2 was prepared by precipitation of ammonia from a water-alcohol mixture (1 : 5). The Al2O3-30% Y0.1Zr0.9O2 compound thus synthesized was characterized using differential scanning calorimetry, transmission electron microscopy, and the BET adsorption method. The obtained sample consisted of spherical particles with an average size of 16–20 nm and a specific surface area of 167 m2/g. The Al2O3-30% Y0.1Zr0.9O2 powder was pressed at 300 MPa and then calcinated at 1600°C for 2 h in air. The topographic and structural features of the prepared ceramics were determined using atomic force microscopy and X-ray electron probe microanalysis. The porosity, the Vickers microhardness, and the tensile strength were determined by mercury porometry.  相似文献   

19.
Co/Al2O3 and Co/Al2O3–BaO catalysts with low cobalt loading (0.1, 0.3 and 1 wt%) for the selective catalytic reduction (SCR) of NO x by C3H6 were prepared. The distribution of cobalt species was investigated by UV–vis diffuse reflectance spectroscopy and by H2-TPR in order to identify the active cobalt species in hydrocarbons (HC)-selective catalytic reduction (SCR). It was found that the nature of cobalt species strongly depends on the cobalt loading as well as on the properties of the support. The barium addition to the alumina slows down solid state diffusion processes, improving the thermal stability of the support and preventing diffusion of cobalt into the bulk. Highly dispersed surface Co2+ species over alumina were identified as active sites in the NO-SCR process. Accordingly, a high concentration of surface Co2+ sites in Co 1 wt%/Al2O3 improves the catalytic performance in NO-SCR, the long term stability as well as the water tolerance. On the contrary, the formation of Co3O4 particles in Co 1 wt%/Al2O3–BaO promotes the propylene oxidation by oxygen, decreasing the activity and selectivity of the catalyst in NO reduction.  相似文献   

20.
Monolithic Ni‐Al2O3/Ni‐foam catalyst is developed by modified wet chemical etching of Ni‐foam, being highly active/selective and stable in strongly exothermic CO2 methanation process. The as‐prepared catalysts are characterized by x‐ray diffraction scanning electron microscopy, inductively coupled plasma atomic emission spectrometry, and H2‐temperature programmed reduction‐mass spectrometry. The results indicate that modified wet chemical etching method is working efficiently for one‐step creating and firmly embedding NiO‐Al2O3 composite catalyst layer (~2 μm) into the Ni‐foam struts. High CO2 conversion of 90% and high CH4 selectivity of >99.9% can be obtained and maintained for a feed of H2/CO2 (molar ratio of 4/1) at 320°C and 0.1 MPa with a gas hourly space velocity of 5000 h?1, throughout entire 1200 h test over 10.2 mL such monolithic catalysts. Computational fluid dynamics calculation and experimental measurement consistently confirm a dramatic reduction of “hotspot” temperature due to enhanced heat transfer. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4323–4331, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号