首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of interest in this paper is the calculation of the motion of the solid–liquid interface and the time-dependent temperature field during solidification of a pure metal. An iterative implicit algorithm has been developed for this purpose using the boundary element method (BEM) with time-dependent Green's functions and convolution integrals. The BEM approach requires discretization of only the surface of the solidifying body. Thus, the numerical method closely follows the physics of the problems and is intuitively very appealing. The formulation and the numerical scheme presented here are general and can be applied to a broad range of moving boundary problems. Emphasis is given to two-dimensional problems. Comparison with existing semi-analytical solutions and other numerical solutions from the literature reveals that the method is fast, accurate and without major time step limitations.  相似文献   

2.
Three formulations of the boundary element method (BEM) and one of the Galerkin finite element method (FEM) are compared according to accuracy and efficiency for the spatial discretization of two-dimensional, moving-boundary problems based on Laplace's equation. The same Euler-predictor, trapezoid-corrector scheme for time integration is used for all four methods. The model problems are on either a bounded or a semi-infinite strip and are formulated so that closed-form solutions are known. Infinite elements are used with both the BEM and FEM techniques for the unbounded domain. For problems with the bounded region, the BEM using the free-space Green's function and piecewise quadratic interpolating functions (QBEM) is more accurate and efficient than the BEM with linear interpolation. However, the FEM with biquadratic basis functions is more efficient for a given accuracy requirement than the QBEM, except when very high accuracy is demanded. For the unbounded domain, the preferred method is the BEM based on a Green's function that satisfies the lateral symmetry conditions and which leads to discretization of the potential only along the moving surface. This last formulation is the only one that reliably satisfies the far-field boundary condition.  相似文献   

3.
A three-dimensional (3D) boundary element method (BEM) is developed for the analysis of composite laminates with holes. Instead of using Kelvin-type Green's functions of anisotropic infinite space, 3D layered Green's functions with the materials of each layer being generally anisotropic, derived recently in the Fourier transform domain, are implemented into a 3D BEM formulation. A novel numerical algorithm is designed to calculate layered Green's functions efficiently. It should be noted that since layered Green's functions satisfy exactly the continuity conditions along the interfaces and top and bottom free surfaces a priori, the model becomes truly 2D and discretization is only needed along the hole surface and prescribed traction and/or displacement boundaries. To test the validity and accuracy of the proposed method, the present layered BEM formulation is applied to the problem of an infinite anisotropic plate with a circular hole where the analytical solution is available. It is found that even with a very coarse mesh, the present BEM can predict the hoop stress very accurately along the hole surface. The BEM formulation is then applied to analyze two composite laminates (90/0)s and (−45/45)s, under a remote in-plane strain, that have been studied previously with different approaches. For the (90/0)s case, the hoop stresses along the hole surface predicted by the present layered BEM formulation are in very close agreement with the previous results. For the (−45/45)s case, however, it is found that a nearly converged solution (less than 5% convergence by doubling the mesh) by the present method is at significant variance with the previous ones that are lack-of-convergence checks. It can be expected that for designing the bolted joints of composites with many layers, a computational tool developed based on the present techniques would be robust and offer a much better solution with regard to accuracy, versatility and design cycle time.  相似文献   

4.
Based on the full‐space Green's functions, a three‐dimensional time‐harmonic boundary element method is presented for the scattering of elastic waves in a triclinic full space. The boundary integral equations for incident, scattered and total wave fields are given. An efficient numerical method is proposed to calculate the free terms for any geometry. The discretization of the boundary integral equation is achieved by using a linear triangular element. Applications are discussed for scattering of elastic waves by a spherical cavity in a 3D triclinic medium. The method has been tested by comparing the numerical results with the existing analytical solutions for an isotropic problem. The results show that, in addition to the frequency of the incident waves, the scattered waves strongly depend on the anisotropy of the media. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The problem of interactions between an inclusion and multiple cracks in a thermopiezoelectric solid is considered by boundary element method (BEM) in this paper. First of all, a BEM for the crack–inclusion problem is developed by way of potential variational principle, the concept of dislocation, and Green's function. In the BE model, the continuity condition of the interface between inclusion and matrix is satisfied, a priori, by the Green's function, and not involved in the boundary element equations. This is then followed by expressing the stress and electric displacement (SED) and elastic displacements and electric potential (EDEP) in terms of polynomials of complex variables ξt and ξk in the transformed ξ‐plane in order to simulate SED intensity factors by the BEM. The least‐squares method incorporating the BE formulation can, then, be used to calculate SED intensity factors directly. Numerical results for a piezoelectric plate with one inclusion and a crack are presented to illustrate the application of the proposed formulation. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, numerical frequency domain formulations are developed to simulate the 2D acoustic wave propagation in the vicinity of an underwater configuration which combines two sub-regions: the first one consists of a wedge with rigid seabed and free surface, and the second one is assumed to have a rigid flat bottom and a free flat surface.The problem is solved using two different numerical methods: the Boundary Element Method (BEM) and the Method of Fundamental Solutions (MFS). Two models are developed by using a sub-region technique, where only the vertical interface between sub-regions of different geometries has to be discretized. These formulations incorporate Green's functions that take into account the presence of flat rigid and free surfaces and of a wedge. Green's functions are defined using two approaches: the image source method is used to model the rigid flat bottom and free flat interface, whereas the response provided by the wedge sub-region is based on a normal mode solution. Additionally, a MFS and a BEM model are also implemented which require the discretization of the sloping rigid seabed of the wedge, therefore making use of Green's functions for a rigid flat bottom and a free surface (using the image source method).A detailed discussion on the performance of these formulations is performed, with the aim of finding an efficient formulation to solve the problem. It is found that the model based on the MFS and on the sub-region technique has a significantly lower computational cost and is stable, therefore being the most suitable for the analysis of acoustic wave propagation in the studied configurations.  相似文献   

7.
A suitable Green's function is developed for the infinite elastic solid, containing internal penny-shaped crack and loaded by a singular co-axial tensile and radial ring-shaped source acting outside or on crack faces. The corresponding boundary integral equation (BIE) is solved by the BEM for the calculation of the mode-I stress intensity factor of cracked axisymmetric finite bodies under tension. The proposed technique has three advantages: (a) it does not require discretization of the crack surface, (b) it does not require multiregion modeling and (c) it reduces the 3-D discretization of the solid to 1-D, resulting in substantially reduced effort. Numerical results are derived for the case of a cylindrical bar with a central penny-shaped crack located in a plane normal to its axis, loaded by tensile force. Comparison with results of other methods are included indicating excellent agreement.  相似文献   

8.
A simple idea is proposed to solve boundary value problems for elastoplastic solids via boundary elements, namely, to use the Green's functions corresponding to both the loading and unloading branches of the tangent constitutive operator to solve for plastic and elastic regions, respectively. In this way, domain integrals are completely avoided in the boundary integral equations. Though a discretization of the region where plastic flow occurs still remains necessary to account for the inhomogeneity of plastic deformation, the elastoplastic analysis reduces, in essence, to a straightforward adaptation of techniques valid for anisotropic linear elastic constitutive equations (the loading branch of the elastoplastic constitutive operator may be viewed formally as a type of anisotropic elastic law). Numerical examples, using J2‐flow theory with linear hardening, demonstrate that the proposed method retains all the advantages related to boundary element formulations, is stable and performs well. The method presented is for simplicity developed for the associative flow rule; however, a full derivation of Green's function and boundary integral equations is also given for the general case of non‐associative flow rule. It is shown that in the non‐associative case, a domain integral unavoidably arises in the formulation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Dynamic soil–structure interaction is concerned with the study of structures supported on flexible soils and subjected to dynamic actions. Methods combining the finite element method (FEM) and the boundary element method (BEM) are well suited to address dynamic soil–structure interaction problems. Hence, FEM–BEM models have been widely used. However, non-linear contact conditions and non-linear behavior of the structures have not usually been considered in the analyses. This paper presents a 3D non-linear time domain FEM–BEM numerical model designed to address soil–structure interaction problems. The BEM formulation, based on element subdivision and the constant velocity approach, was improved by using interpolation matrices. The FEM approach was based on implicit Green's functions and non-linear contact was considered at the FEM–BEM interface. Two engineering problems were studied with the proposed methodology: the propagation of waves in an elastic foundation and the dynamic response of a structure to an incident wave field.  相似文献   

10.
A two-dimensional (2D) time-domain boundary element method (BEM) is presented in this paper for transient analysis of elastic wave scattering by a crack in homogeneous, anisotropic and linearly elastic solids. A traction boundary integral equation formulation is applied to solve the arising initial-boundary value problem. A numerical solution procedure is developed to solve the time-domain boundary integral equations. A collocation method is used for the temporal discretization, while a Galerkin-method is adopted for the spatial discretization of the boundary integral equations. Since the hypersingular boundary integral equations are first regularized to weakly singular ones, no special integration technique is needed in the present method. Special attention of the analysis is devoted to the computation of the scattered wave fields. Numerical examples are given to show the accuracy and the reliability of the present time-domain BEM. The effects of the material anisotropy on the transient wave scattering characteristics are investigated.  相似文献   

11.
The boundary element method (BEM) is used to compute the three-dimensional transient heat conduction through an unbounded solid layer that may contain heterogeneities, when a pointwise heat source placed at some point in the media is excited. Analytical solutions for the steady-state response of this solid layer when subjected to a spatially sinusoidal harmonic heat line source are presented when the solid layer has no inclusions. These solutions are incorporated into a BEM formulation as Greens functions to avoid the discretization of flat media interfaces. The solution is obtained in the frequency domain, and time responses are computed by applying inverse (Fast) Fourier Transforms. Complex frequencies are used to prevent the aliasing phenomena. The results provided by the proposed Greens functions and BEM formulation are implemented and compared with those computed by a BEM code that uses the Greens functions for an unbounded media which requires the discretization of all solid interfaces with boundary elements. The proposed BEM model is then used to evaluate the temperature field evolution through an unbounded solid layer that contains cylindrical inclusions with different thermal properties, when illuminated by a plane heat source. In this model zero initial conditions are assumed. Different simulation analyses using this model are then performed to evaluate the importance of the thermal properties of the inclusions on transient heat conduction through the solid layer.  相似文献   

12.
An alternative scheme to compute the Green's function and its derivatives for three dimensional generally anisotropic elastic solids is presented in this paper. These items are essential in the formulation of the boundary element method (BEM); their evaluation has remained a subject of interest because of the mathematical complexity. The Green's function considered here is the one introduced by Ting and Lee [Q. J. Mech. Appl. Math. 1997; 50: 407–26] which is of real-variable, explicit form expressed in terms of Stroh's eigenvalues. It has received attention in BEM only quite recently. By taking advantage of the periodic nature of the spherical angles when it is expressed in the spherical coordinate system, it is proposed that this Green's function be represented by a double Fourier series. The Fourier coefficients are determined numerically only once for a given anisotropic material; this is independent of the number of field points in the BEM analysis. Derivatives of the Green's function can be performed by direct spatial differentiation of the Fourier series. The resulting formulations are more concise and simpler than those derived analytically in closed form in previous studies. Numerical examples are presented to demonstrate the veracity and superior efficiency of the scheme, particularly when the number of field points is very large, as is typically the case when analyzing practical three dimensional engineering problems.  相似文献   

13.
A stochastic boundary element method (SBEM) is developed in this work for evaluating the dynamic response of underground openings excited by seismically induced, horizontally polarized shear waves under steady-state conditions. The surrounding geological medium is viewed as an elastic continuum exhibiting large randomness in its mechanical properties, which implies that the wave number of the propagating signal is a function of a random variable. Suitable Green's functions are proposed and used within the context of the SBEM formulation. More specifically, a series expansion for the Green's functions is employed, where the basis functions are orthogonal polynomials of a random argument (polynomial chaos). These are subsequently incorporated in the SBEM formulation, which employs the usual quadratic, isoparametric line elements for modeling the surfaces of the problem in question. Finally, this formulation is used for the solution of a few problems of engineering interest involving buried cavities (tunnels). We note that the present approach departs from earlier boundary element derivations based on perturbations, which are valid for ‘small’ amounts of randomness in the elastic continuum.  相似文献   

14.
This paper presents a new boundary element method (BEM) for linear elastic fracture mechanics in three-dimensional multilayered solids. The BEM is based on a generalized Kelvin solution. The generalized Kelvin solution is the fundamental singular solution for a multilayered elastic solid subject to point concentrated body-forces. For solving three-dimensional elastic crack problems in a finite region, a multi-region method is also employed in the present BEM. For crack problems in an infinite space, a large finite body is used to approximate the infinite body. In addition, eight-node traction-singular boundary elements are used in representing the displacements and tractions in the vicinity of a crack front. The incorporation of the generalized Kelvin solution into the boundary integral formulation has the advantages in elimination of the element discretization at the interfaces of different elastic layers. Three numerical examples are presented to illustrate the proposed method for the calculation of stress intensity factors for cracks in layered solids. The results obtained using the proposed method are well compared with the existing results available in the relevant literature.  相似文献   

15.
This paper presents a development of the boundary contour method (BCM) for piezoelectric media. First, the divergence‐free property of the integrand of the piezoelectric boundary element is proved. Secondly, the boundary contour method formulation is derived and potential functions are obtained by introducing linear shape functions and Green's functions (Computer Methods in Applied Mechanics and Engineering 1998; 158 : 65) for piezoelectric media. The BCM is applied to the problem of piezoelectric media. Finally, numerical solutions for illustrative examples are compared with exact ones and those of the conventional boundary element method (BEM). The numerical results of the BCM coincide very well with the exact solution, and the feasibility and efficiency of the method are verified. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
This article explores the rich heritage of the boundary element method (BEM) by examining its mathematical foundation from the potential theory, boundary value problems, Green's functions, Green's identities, to Fredholm integral equations. The 18th to 20th century mathematicians, whose contributions were key to the theoretical development, are honored with short biographies. The origin of the numerical implementation of boundary integral equations can be traced to the 1960s, when the electronic computers had become available. The full emergence of the numerical technique known as the boundary element method occurred in the late 1970s. This article reviews the early history of the boundary element method up to the late 1970s.  相似文献   

17.
A model of 2D SH ultrasonic nondestructive testing for interior strip-like cracks near a non-planar back surface in a thick-walled elastic solid is presented. The model employs a Green's function to reformulate the 2D antiplane wave scattering problem as two coupled boundary integral equations (BIE): a displacement BIE for the back surface displacement and a hypersingular traction BIE for the crack opening displacement (COD). The integral equations are solved by performing a boundary element discretization of the back surface and expanding the COD in a series of Chebyshev functions which incorporate the correct behaviour at the crack edges. The transmitting ultrasonic probe is modelled by prescribing the traction underneath it, enabling the consequent calculation of the incident field. An electromechanical reciprocity relation is used to model the action of the receiving probe. A few numerical examples which illustrate the influence of the non-planar back surface are given.  相似文献   

18.
Thermomagnetoelectroelastic problems for various defects embedded in an infinite matrix are considered in this paper. Using Stroh's formalism, conformal mapping, and perturbation technique, Green's functions are obtained in closed form for a defect in an infinite magnetoelectroelastic solid induced by the thermal analog of a line temperature discontinuity and a line heat source. The defect may be of an elliptic hole or a Griffith crack, a half-plane boundary, a bimaterial interface, or a rigid inclusion. These Green's functions satisfy the relevant boundary or interface conditions. The proposed Green's functions can be used to establish boundary element formulation and to analyzing fracture behaviour due to the defects mentioned above.  相似文献   

19.
With the aid of the elastic–viscoelastic correspondence principle, the boundary element developed for the linear anisotropic elastic solids can be applied directly to the linear anisotropic viscoelastic solids in the Laplace domain. Green's functions for the problems of two-dimensional linear anisotropic elastic solids containing holes, cracks, inclusions, or interfaces have been obtained analytically using Stroh's complex variable formalism. Through the use of these Green's functions and the correspondence principle, special boundary elements in the Laplace domain for viscoelastic solids containing holes, cracks, inclusions, or interfaces are developed in this paper. Subregion technique is employed when multiple holes, cracks, inclusions, and interfaces exist simultaneously. After obtaining the physical responses in Laplace domain, their associated values in time domain are calculated by the numerical inversion of Laplace transform. The main feature of this proposed boundary element is that no meshes are needed along the boundary of holes, cracks, inclusions and interfaces whose boundary conditions are satisfied exactly. To show this special feature by comparison with the other numerical methods, several examples are solved for the linear isotropic viscoelastic materials under plane strain condition. The results show that the present BEM is really more efficient and accurate for the problems of viscoelastic solids containing interfaces, holes, cracks, and/or inclusions.  相似文献   

20.
Cauchy's theorem is used to generate a Complex Variable Boundary Element Method (CVBEM) formulation for steady, two-dimensional potential problems. CVBEM uses the complex potential, w=ϕ+iψ, to combine the potential function, ϕ, with the stream function, ψ. The CVBEM formulation, using Cauchy's theorem, is shown to be mathematically equivalent to Real Variable BEM which employs Green's second identity and the respective fundamental solution. CVBEM yields an overdetermined system of equations that are commonly solved using implicit and explicit methods that reduce the overdetermined matrix to a square matrix by selectively excluding equations. Alternatively, Ordinary Least Squares (OLS) can be used to minimize the Euclidean norm square of the residual vector that arises due to the approximation of boundary potentials and geometries. OLS uses all equations to form a square matrix that is symmetric, positive definite and diagonally dominant. OLS is more accurate than existing methods and can estimate the approximation error at boundary nodes. The approximation error can be used to determine the adequacy of boundary discretization schemes. CVBEM/OLS provides greater flexibility for boundary conditions by allowing simultaneous specification of both fluid potentials and stream functions, or their derivatives, along boundary elements. © 1997 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号