首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of G protein-coupled receptor kinase subtypes by Ca2+/calmodulin   总被引:1,自引:0,他引:1  
G protein-coupled receptor kinases (GRKs) are implicated in the homologous desensitization of G protein-coupled receptors. Six GRK subtypes have so far been identified, named GRK1 to GRK6. The functional state of the GRKs can be actively regulated in different ways. In particular, it was found that retinal rhodopsin kinase (GRK1), but not the ubiquitous betaARK1 (GRK2), can be inhibited by the photoreceptor-specific Ca2+-binding protein recoverin through direct binding. The present study was aimed to investigate regulation of other GRKs by alternative Ca2+-binding proteins such as calmodulin (CaM). We found that Gbetagamma-activated GRK2 and GRK3 were inhibited by CaM to similar extents (IC50 approximately 2 microM), while a 50-fold more potent inhibitory effect was observed on GRK5 (IC50 = 40 nM). Inhibition by CaM was strictly dependent on Ca2+ and was prevented by the CaM inhibitor CaMBd. Since Gbetagamma, which is a binding target of Ca2+/CaM, is critical for the activation of GRK2 and GRK3, it provides a possible site of interaction between these proteins. However, since GRK5 is Gbetagamma-independent, an alternative mechanism is conceivable. A direct interaction between GRK5 and Ca2+/CaM was revealed using CaM-conjugated Sepharose 4B. This binding does not influence the catalytic activity as demonstrated using the soluble GRK substrate casein. Instead, Ca2+/CaM significantly reduced GRK5 binding to the membrane. The mechanism of GRK5 inhibition appeared to be through direct binding to Ca2+/CaM, resulting in inhibition of membrane association and hence receptor phosphorylation. The present study provides the first evidence for a regulatory effect of Ca2+/CaM on some GRK subtypes, thus expanding the range of different mechanisms regulating the functional states of these kinases.  相似文献   

2.
Inhibition of G protein-coupled receptor kinases (GRKs) by Ca2+-binding proteins has recently emerged as a general mechanism of GRK regulation. While GRK1 (rhodopsin kinase) is inhibited by the photoreceptor-specific Ca2+-binding protein recoverin, other GRKs can be inhibited by Ca2+-calmodulin. To dissect the mechanism of this inhibition at the molecular level, we localized the GRK domains involved in Ca2+-binding protein interaction using a series of GST-GRK fusion proteins. GRK1, GRK2, and GRK5, which represent the three known GRK subclasses, were each found to possess two distinct calmodulin-binding sites. These sites were localized to the N- and C-terminal regulatory regions within domains rich in positively charged and hydrophobic residues. In contrast, the unique N-terminally localized GRK1 site for recoverin had no clearly defined structural characteristics. Interestingly, while the recoverin and calmodulin-binding sites in GRK1 do not overlap, recoverin-GRK1 interaction is inhibited by calmodulin, most likely via an allosteric mechanism. Further analysis of the individual calmodulin sites in GRK5 suggests that the C-terminal site plays the major role in GRK5-calmodulin interaction. While specific mutation within the N-terminal site had no effect on calmodulin-mediated inhibition of GRK5 activity, deletion of the C-terminal site attenuated the effect of calmodulin on GRK5, and the simultaneous mutation of both sites rendered the enzyme calmodulin-insensitive. These studies provide new insight into the mechanism of Ca2+-dependent regulation of GRKs.  相似文献   

3.
Ca2+ ion concentration changes are critical events in signal transduction. The Ca2+-dependent interactions of calmodulin (CaM) with its target proteins play an essential role in a variety of cellular functions. In this study, we investigated the interactions of G protein betagamma subunits with CaM. We found that CaM binds to known betagamma subunits and these interactions are Ca2+-dependent. The CaM-binding domain in Gbetagamma subunits is identified as Gbeta residues 40-63. Peptides derived from the Gbeta protein not only produce a Ca2+-dependent gel mobility shifting of CaM but also inhibit the CaM-mediated activation of CaM kinase II. Specific amino acid residues critical for the binding of Gbetagamma to CaM were also identified. We then investigated the potential function of these interactions and showed that binding of CaM to Gbetagamma inhibits the pertussis toxin-catalyzed ADP-ribosylation of Galphao subunits, presumably by inhibiting heterotrimer formation. Furthermore, we demonstrated that interaction with CaM has little effect on the activation of phospholipase C-beta2 by Gbetagamma subunits, supporting the notion that different domains of Gbetagamma are responsible for the interactions of different effectors. These findings shed light on the molecular basis for the interactions of Gbetagamma with Ca2+-CaM and point to the potential physiological significance of these interactions in cellular functions.  相似文献   

4.
Monocyte chemoattractant protein 1 (MCP-1) is a member of the chemokine cytokine family, whose physiological function is mediated by binding to the CCR2 and CCR4 receptors, which are members of the G protein-coupled receptor family. MCP-1 plays a critical role in both activation and migration of leukocytes. Rapid chemokine receptor desensitization is very likely essential for accurate chemotaxis. In this report, we show that MCP-1 binding to the CCR2 receptor in Mono Mac 1 cells promotes the rapid desensitization of MCP-1-induced calcium flux responses. This desensitization correlates with the Ser/Thr phosphorylation of the receptor and with the transient translocation of the G protein-coupled receptor kinase 2 (GRK2, also called beta-adrenergic kinase 1 or betaARK1) to the membrane. We also demonstrate that GRK2 and the uncoupling protein beta-arrestin associate with the receptor, forming a macromolecular complex shortly after MCP-1 binding. Calcium flux responses to MCP-1 in HEK293 cells expressing the CCR2B receptor were also markedly reduced upon cotransfection with GRK2 or the homologous kinase GRK3. Nevertheless, expression of the GRK2 dominant-negative mutant betaARK-K220R did not affect the initial calcium response, but favored receptor response to a subsequent challenge by agonists. The modulation of the CCR2B receptor by GRK2 suggests an important role for this kinase in the regulation of monocyte and lymphocyte response to chemokines.  相似文献   

5.
The G protein-coupled receptor kinase 2 (GRK2) is a serine/threonine kinase that phosphorylates and desensitizes agonist-occupied G protein-coupled receptors (GPCRs). Here we demonstrate that GRK2 is a microtubule-associated protein and identify tubulin as a novel GRK2 substrate. GRK2 is associated with microtubules purified from bovine brain, forms a complex with tubulin in cell extracts, and colocalizes with tubulin in living cells. Furthermore, an endogenous tubulin kinase activity that copurifies with microtubules has properties similar to GRK2 and is inhibited by anti-GRK2 monoclonal antibodies. Indeed, GRK2 phosphorylates tubulin in vitro with kinetic parameters very similar to those for phosphorylation of the agonist-occupied beta2-adrenergic receptor, suggesting a functionally relevant role for this phosphorylation event. In a cellular environment, agonist occupancy of GPCRs, which leads to recruitment of GRK2 to the plasma membrane and its subsequent activation, promotes GRK2-tubulin complex formation and tubulin phosphorylation. These findings suggest a novel role for GRK2 as a GPCR signal transducer mediating the effects of GPCR activation on the cytoskeleton.  相似文献   

6.
The alpha2-adrenergic receptor (alpha2AR) subtype alpha2C10 undergoes rapid agonist-promoted desensitization which is due to phosphorylation of the receptor. One kinase that has been shown to phosphorylate alpha2C10 in an agonist-dependent manner is the betaAR kinase (betaARK), a member of the family of G protein-coupled receptor kinases (GRKs). In contrast, the alpha2C4 subtype has not been observed to undergo agonist-promoted desensitization or phosphorylation by betaARK. However, the substrate specificities of the GRKs for phosphorylating alpha2AR subtypes are not known. We considered that differential capacities of various GRKs to phosphorylate alpha2C10 and alpha2C4 might be a key factor in dictating in a given cell the presence or extent of agonist-promoted desensitization of these receptors. COS-7 cells were co-transfected with alpha2C10 or alpha2C4 without or with the following GRKs: betaARK, betaARK2, GRK5, or GRK6. Intact cell phosphorylation studies were carried out by labeling cells with 32Pi, exposing some to agonist, and purifying the alpha2AR by immunoprecipitation and SDS-polyacrylamide gel electrophoresis. BetaARK and betaARK2 were both found to phosphorylate alpha2C10 to equal extents (>2-fold over that of the endogenous kinases). On the other hand, GRK5 and GRK6 did not phosphorylate alpha2C10. In contrast to the findings with alpha2C10, alpha2C4 was not phosphorylated by any of these kinases. Functional studies carried out in transfected HEK293 cells expressing alpha2C10 or alpha2C4 and selected GRKs were consistent with these phosphorylation results. With the marked expression of these receptors, no agonist-promoted desensitization was observed in the absence of GRK co-expression. However, desensitization was imparted to alpha2C10 by co-expression of betaARK but not GRK6, while alpha2C4 failed to desensitize with co-expression of betaARK. These results indicate that short term agonist-promoted desensitization of alpha2ARs by phosphorylation is dependent on both the receptor subtype and the expressed GRK isoform.  相似文献   

7.
G protein-coupled receptor kinases (GRKs) initiate pathways leading to the desensitization of agonist-occupied G-protein-coupled receptors (GPCRs). Here we report that the cytoskeletal protein actin binds and inhibits GRK5. Actin inhibits the kinase activity directly, reducing GRK5-mediated phosphorylation of both membrane-bound GPCRs and soluble substrates. GRK5 binds actin monomers with a Kd of 0.6 microM and actin filaments with a Kd of 0. 2 microM. Mutation of 6 amino acids near the amino terminus of GRK5 eliminates actin-mediated inhibition of GRK5. Calmodulin has previously been shown to bind to the amino terminus of GRK5 (Pronin, A. N., and Benovic, J. L. (1997) J. Biol. Chem. 272, 3806-3812) and here we show calmodulin displaces GRK5 from actin. Calmodulin inhibits GRK5-mediated phosphorylation of GPCRs, but not soluble substrates such as casein. Thus in the presence of actin, calmodulin determines the substrate specificity of GRK5 by preferentially allowing phosphorylation of soluble substrates over membrane-bound substrates.  相似文献   

8.
Calcium-dependent potassium (KCa) channels carry ionic currents that regulate important cellular functions. Like some other ion channels, KCa channels are modulated by protein phosphorylation. The recent cloning of complementary DNAs encoding Slo KCa channels has enabled KCa channel modulation to be investigated. We report here that protein phosphorylation modulates the activity of Drosophila Slo KCa channels expressed in Xenopus oocytes. Application of ATP-gamma S to detached membrane patches increases Slo channel activity by shifting channel voltage sensitivity. This modulation is blocked by a specific inhibitor of cyclic AMP-dependent protein kinase (PKA). Mutation of a single serine residue in the channel protein also blocks modulation by ATP-gamma S, demonstrating that phosphorylation of the Slo channel protein itself modulates channel activity. The results also indicate that KCa channels in oocyte membrane patches can be modulated by an endogenous PKA-like protein kinase which remains functionally associated with the channels in the detached patch.  相似文献   

9.
We recently reported that a beta2-adrenergic receptor (beta2AR) mutant, Y326A, defective in its ability to sequester in response to agonist stimulation was a poor substrate for G protein-coupled receptor kinase (GRK)-mediated phosphorylation; however, its ability to be phosphorylated and sequestered could be restored by overexpressing GRK2 [Ferguson et al. (1995) J. Biol. Chem. 270, 24782]. In the present report, we tested the ability of each of the known GRKs (GRK1-6) to phosphorylate and rescue the sequestration of the Y326A mutant in HEK-293 cells. We demonstrate that in addition to GRK2, GRK3-6 can phosphorylate the Y326A mutant and rescue its sequestration; however, GRK1 was totally ineffective in rescuing either the phosphorylation or the sequestration of the mutant receptor. We found that the agonist-dependent rescue of Y326A mutant phosphorylation by GRK2, -3, and -5 was associated with the agonist-dependent rescue of sequestration. In contrast, overexpression of GRK4 and -6 led mainly to agonist-independent phosphorylation of the Y326A mutant accompanied by increased basal receptor sequestration. Our results demonstrate that phosphorylation per se, but not the interaction with a specific GRK, is required to facilitate beta2AR sequestration.  相似文献   

10.
A permeable cell system in which Ca2+ release can be evoked by inositol 1,4,5-trisphosphate (IP3) or agonist stimulation was used to study the regulation of Ca2+ release by Ca2+ itself. At low concentrations, Ca2+ activated IP3-mediated Ca2+ release (IMCR) with half-maximal effect at about 15 nM. At high concentrations, Ca2+ inhibited IMCR giving rise to a biphasic [Ca2+] dependence of IMCR. The activation of IMCR by Ca2+ appears to be mediated by a kinase, probably the Ca(2+)-and calmodulin-dependent protein kinase (CaMKII). Thus, the activation required MgATP, completely blocked at 0 degrees C, required Ca2+, and was inhibited by the CaMKII inhibitors KT5926 and KN62. The inhibition of IMCR seems to be mediated by a protein phosphatase, probably the Ca(2+)-dependent protein phosphatase 2B. Hence, the inhibition required Ca2+, was prevented by the general protein phosphatase inhibitor pyrophosphate and by the immunosuppressants cyclosporin A and FK506, but not by okadaic acid or VO4(2-), and was modified by chelating agents such as EGTA. Stimulation with agonists modified the activities of the kinase and phosphatase to make the release independent of [Ca2+]. This appears to be due to an increase in the apparent affinity for Ca2+ in stimulating IMCR and inhibition of the phosphatase. We suggest that agonist-dependent modification of the kinase/phosphatase activity ratio can be the biochemical pathway responsible for regulation of Ca2+ release and in turn [Ca2+]i oscillations.  相似文献   

11.
The G protein-coupled receptor kinase GRK6 undergoes posttranslational modification by palmitoylation. Palmitoylated GRK6 is associated with the membrane, while nonpalmitoylated GRK6 remains cytosolic. We have separated palmitoylated from nonpalmitoylated GRK6 to assess their relative kinase activity. Palmitoylated GRK6 is 10-fold more active at phosphorylating beta2-adrenergic receptor than nonpalmitoylated wild-type GRK6 or a nonpalmitoylatable mutant GRK6. A nonpalmitoylatable mutant GRK6 which has been further mutated to undergo posttranslational geranylgeranylation is also more active, recovering most of the activity of the palmitoylated enzyme. This activity increase by lipid modification is expected, as the lipid helps GRK6 localize to cellular membranes where its receptor substrates are found. However, when assayed using a soluble protein (casein) as a substrate, both palmitoylated and prenylated GRK6 display significantly higher activity than nonpalmitoylated wild-type or nonpalmitoylatable mutant GRK6 kinases. This increased activity is not altered by addition of exogenous palmitate or phosphatidycholine vesicles, arguing that it is not due to direct activation of GRK6 by binding palmitate, nor to nonspecific association of the GRK6 with casein. Further, chemical depalmitoylation reduces the casein phosphorylation activity of the palmitoylated, but not prenylated, GRK6 kinase. Thus, palmitoylation of GRK6 appears to play a dual role in increasing the activity of GRK6: it increases the hydrophobicity and membrane association of the GRK6 protein, which helps bring the GRK6 to its membrane-bound substrates, and it increases the kinase catalytic activity of GRK6.  相似文献   

12.
BACKGROUND: Impaired myocardial beta-adrenergic receptor (betaAR) signaling, including desensitization and functional uncoupling, is a characteristic of congestive heart failure. A contributing mechanism for this impairment may involve enhanced myocardial beta-adrenergic receptor kinase (betaARK1) activity because levels of this betaAR-desensitizing G protein-coupled receptor kinase (GRK) are increased in heart failure. An hypothesis has emerged that increased sympathetic nervous system activity associated with heart failure might be the initial stimulus for betaAR signaling alterations, including desensitization. We have chronically treated mice with drugs that either activate or antagonize betaARs to study the dynamic relationship between betaAR activation and myocardial levels of betaARK1. METHODS AND RESULTS: Long-term in vivo stimulation of betaARs results in the impairment of cardiac +betaAR signaling and increases the level of expression (mRNA and protein) and activity of +betaARK1 but not that of GRK5, a second GRK abundantly expressed in the myocardium. Long-term beta-blocker treatment, including the use of carvedilol, improves myocardial betaAR signaling and reduces betaARK1 levels in a specific and dose-dependent manner. Identical results were obtained in vitro in cultured cells, demonstrating that the regulation of GRK expression is directly linked to betaAR signaling. CONCLUSIONS: This report demonstrates, for the first time, that betaAR stimulation can significantly increase the expression of betaARK1 , whereas beta-blockade decreases expression. This reciprocal regulation of betaARK1 documents a novel mechanism of ligand-induced betaAR regulation and provides important insights into the potential mechanisms responsible for the effectiveness of beta-blockers, such as carvedilol, in the treatment of heart failure.  相似文献   

13.
The neuronal effects of the metabotropic glutamate receptor agonist (1S,3R)-aminocyclopentane-1,3-dicarboxylic acid have been studied in cultured rat cerebellar granule cells, and compared with those of the endogenous excitotoxin glutamate, and the dietary excitotoxin beta-N-methylamino-L-alanine. Glutamate, beta-N-methylamino-L-alanine, and (1S,3R)-aminocyclopentane-1,3-dicarboxylic acid all caused concentration-dependent cerebellar granule cell death over a 24-h exposure period. The metabotropic antagonist (RS)-alpha-methyl-4-carboxyphenylglycine reduced glutamate-, beta-N-methylamino-L-alanine-, and (1S,3R)-aminocyclopentane-1,3-dicarboxylic acid-induced death by 50, 37, and 90%, respectively. (1S,3R)-Aminocyclopentane-1,3-dicarboxylic acid-induced death was unaffected by the group I antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid, increased by the group II antagonist ethylglutamic acid, and markedly decreased by the group III antagonist (RS)-alpha-methylserine-O-phosphate. Neither (1S,3R)-aminocyclopentane-1,3-dicarboxylic acid nor the group I agonist (RS)-3,5-dihydroxyphenylglycine caused an increase in intracellular free calcium levels. The group III agonist L-(+)-2-amino-4-phosphonobutyric acid also induced concentration-dependent cerebellar granule cell death, and so it was suggested that the group III metabotropic glutamate receptors were responsible for (1S,3R)-aminocyclopentane-1,3-dicarboxylic acid-induced death. Blocking these receptors with (RS)-alpha-methylserine-O-phosphate also prevented a proportion of glutamate- and beta-N-methylamino-L-alanine-induced death.  相似文献   

14.
Over the last decade, nursing in the United Kingdom has witnessed a major development and expansion in the number of Clinical Nurse Specialists. These nurses are considered to be experts in their own specialities, have in-depth knowledge and provide a service for patients, relatives and staff. There is, however, a paucity of literature relating to role transition from experienced Staff Nurse to Clinical Nurse Specialist. Using Nicholson's (1984) model of work-role transition and Wanous' (1992) four-stage model of organizational socialization, this study explores the transition of two nurses from experienced Staff Nurses to novice Clinical Nurse Specialists.  相似文献   

15.
Many receptors that couple to heterotrimeric guanine-nucleotide binding proteins (G proteins) have been shown to mediate rapid activation of the mitogen-activated protein kinases Erk1 and Erk2. In different cell types, the signaling pathways employed appear to be a function of the available repertoire of receptors, G proteins, and effectors. In HEK-293 cells, stimulation of either alpha1B- or alpha2A-adrenergic receptors (ARs) leads to rapid 5-10-fold increases in Erk1/2 phosphorylation. Phosphorylation of Erk1/2 in response to stimulation of the alpha2A-AR is effectively attenuated by pretreatment with pertussis toxin or by coexpression of a Gbetagamma subunit complex sequestrant peptide (betaARK1ct) and dominant-negative mutants of Ras (N17-Ras), mSOS1 (SOS-Pro), and Raf (DeltaN-Raf). Erk1/2 phosphorylation in response to alpha1B-AR stimulation is also attenuated by coexpression of N17-Ras, SOS-Pro, or DeltaN-Raf, but not by coexpression of betaARK1ct or by pretreatment with pertussis toxin. The alpha1B- and alpha2A-AR signals are both blocked by phospholipase C inhibition, intracellular Ca2+ chelation, and inhibitors of protein-tyrosine kinases. Overexpression of a dominant-negative mutant of c-Src or of the negative regulator of c-Src function, Csk, results in attenuation of the alpha1B-AR- and alpha2A-AR-mediated Erk1/2 signals. Chemical inhibitors of calmodulin, but not of PKC, and overexpression of a dominant-negative mutant of the protein-tyrosine kinase Pyk2 also attenuate mitogen-activated protein kinase phosphorylation after both alpha1B- and alpha2A-AR stimulation. Erk1/2 activation, then, proceeds via a common Ras-, calcium-, and tyrosine kinase-dependent pathway for both Gi- and Gq/11-coupled receptors. These results indicate that in HEK-293 cells, the Gbetagamma subunit-mediated alpha2A-AR- and the Galphaq/11-mediated alpha1B-AR-coupled Erk1/2 activation pathways converge at the level of phospholipase C. These data suggest that calcium-calmodulin plays a central role in the calcium-dependent regulation of tyrosine phosphorylation by G protein-coupled receptors in some systems.  相似文献   

16.
Recoverin is a 23 kDa myristoylated Ca2+-binding protein that inhibits rhodopsin kinase. We have used surface plasmon resonance to investigate the influences of Ca2+, myristoylation, and adenine nucleotides on the recoverin-rhodopsin kinase interaction. Our analyses confirmed that Ca2+ is required for recoverin to bind RK. Myristoylation had little effect on the affinity of recoverin for the kinase, but it raised the K0.5 for Ca2+ from 150 nM for nonacylated recoverin to 400 nM for myristoylated recoverin. Finally, our studies also revealed two separate and previously unreported effects of adenine nucleotides on the recoverin-rhodopsin kinase binding. The interaction is weakened by autophosphorylation of the kinase, and it is strengthened by the presence of ADP.  相似文献   

17.
Stimulation of human submandibular gland cells with carbachol, inositol trisphosphate (IP3), thapsigargin, or tert-butylhydroxyquinone induced an inward current that was sensitive to external Ca2+ concentration ([Ca2+]e) and was also carried by external Na+ or Ba2+ (in a Ca2+-free medium) with amplitudes in the order Ca2+ > Ba2+ > Na+. All cation currents were blocked by La3+ and Gd3+ but not by Zn2+. The IP3-stimulated current with 10 microM 3-deoxy-3-fluoro-D-myo-inositol 1,4,5-triphosphate and 10 mM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid in the pipette solution, showed 50% inactivation in <5 min and >5 min with 10 and 1 mM [Ca2+]e, respectively. The Na+ current was not inactivated, whereas the Ba2+ current inactivated at a slower rate. The protein kinase inhibitor, staurosporine, delayed the inactivation and increased the amplitude of the current, whereas the protein Ser/Thr phosphatase inhibitor, calyculin A, reduced the current. Thapsigargin- and tert-butylhydroxyquinone-stimulated Ca2+ currents inactivated faster. Importantly, these agents accelerated the inactivation of the IP3-stimulated current. The data demonstrate that internal Ca2+ store depletion-activated Ca2+ current (ISOC) in this salivary cell line is regulated by a Ca2+-dependent feedback mechanism involving a staurosporine-sensitive protein kinase and the intracellular Ca2+ pump. We suggest that the Ca2+ pump modulates ISOC by regulating [Ca2+]i in the region of Ca2+ influx.  相似文献   

18.
Sequestration of m2 receptors (muscarinic acetylcholine receptor m2 subtypes), which was assessed as loss of N-[3H]methylscopolamine ([3H]NMS) binding activity from the cell surface, was examined in COS 7 and BHK-21 cells that had been transfected with expression vectors encoding the m2 receptor and, independently, vectors encoding a G protein-coupled receptor kinase (GRK2) (beta-adrenergic receptor kinase 1) or a GRK2 dominant-negative mutant (DN-GRK2). The sequestration of m2 receptors became apparent when the cells were treated with 10(-5) M or higher concentrations of carbamylcholine. In this case, approximately 40% or 20-25% of the [3H]NMS binding sites on COS 7 or BHK-21 cells, respectively, were sequestered with a half-life of 15-25 min. In cells in which GRK2 was also expressed, the sequestration became apparent in the presence of 10(-7) M carbamylcholine. Approximately 40% of the [3H]NMS binding sites on both COS 7 and BHK-21 cells were sequestered in the presence of 10(-6) M or higher concentrations of carbamylcholine. When DN-GRK2 was expressed in COS 7 cells, the proportion of [3H]NMS binding sites sequestered in the presence of 10(-5) M or higher concentrations of carbamylcholine was reduced to 20-30%. These results indicate that the phosphorylation of m2 receptors by GRK2 facilitates their sequestration. These results are in contrast with the absence of a correlation between sequestration and the phosphorylation of beta-adrenergic receptors by the GRK2 and suggests that the consequences of phosphorylation by GRK2 are different for different receptors.  相似文献   

19.
Mast cells secrete a variety of biologically active substances that mediate inflammatory responses. Synaptotagmin(s) (Syts) are a gene family of proteins that are implicated in the control of Ca2+-dependent exocytosis. In the present study, we investigated the possible occurrence and functional involvement of Syt in the control of mast cell exocytosis. Here, we demonstrate that both connective tissue type and mucosal-like mast cells express Syt-immunoreactive proteins, and that these proteins are localized almost exclusively to their secretory granules. Furthermore, expression of Syt I, the neuronal Ca2+ sensor, in rat basophilic leukemia cells (RBL-2H3), a tumor analogue of mucosal mast cells, resulted in prominent potentiation and acceleration of Ca2+-dependent exocytosis. Therefore, these findings implicate Syt as a Ca2+ sensor that mediates regulated secretion in mast cells to calcium ionophore.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号