首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S.H. Mohamed  S. Venkataraj 《Vacuum》2007,81(5):636-643
Thin films of MoO3 were prepared on quartz and Si (1 0 0) substrates by reactive dc magnetron sputtering of a Mo target in an oxygen and argon atmosphere. The structural and optical changes induced in the films due to post-growth annealing have been systematically studied by Rutherford backscattering (RBS), X-ray diffraction (XRD), X-ray reflectivity (XRR) and by optical methods. RBS studies reveal no change in composition of the films upon annealing at high temperatures. Grazing angle XRD studies show that the as-deposited films are amorphous and crystallize to β-MoO3 phase with small contribution of α-MoO3 upon annealing at 300 °C. The film prepared at 0.40 Pa transforms to α-MoO3 upon annealing at 650 °C, while the film deposited at 0.19 Pa still has some β-MoO3 phase contribution. XRR measurements reveal that the film thickness decreases upon annealing with simultaneous increase of film density. The surface roughness of the films strongly increases after crystallization. The contraction of the film deposited at 0.40 Pa is much greater than the contraction of the film prepared at 0.19 Pa. The mass variation of the film deposited at 0.19 Pa and that deposited at 0.40 Pa are completely different. The optical properties of MoO3 films deposited at 0.19 and 0.40 Pa are changed strongly by annealing.  相似文献   

2.
Thin films of Ta2O5, Nb2O5, and HfO2 were deposited by reactive-low-voltage-ion-plating (RLVIP) on unheated glass and silicon substrates. The film thickness was about 200 nm. Optical properties as well as mechanical film stress of these layers were investigated in dependence of various deposition parameters, i.e. arc current and oxygen partial pressure. For an arc current in the range between 40 and 50 A and an oxygen partial pressure of at least 11 · 10− 4 mbar good results were obtained. The refractive index and film thickness were calculated from spectrophotometric transmission data using the Swanepoel theory. For example at 550 nm wavelength the refractive index for thin RLVIP-Nb2O5-films was found to be n550 = 2.40. The optical absorption was obtained by photo-thermal deflection spectrometry. For the investigated materials absorption coefficients in the range of k = 5 · 10− 4 at 515 nm wavelength were measured. The mechanical film stress was determined by measuring the difference in bending of silicon substrates before and after the deposition process. For dense films, i.e. no water vapour sorption on atmosphere, the mechanical film stress was always compressive with values of some hundred MPa. In case of films deposited with higher arc currents (Iarc > 60A) and lower oxygen pressure (< 15 · 10− 4 mbar) the influence of a post deposition heat treatment at 350 °C for 4 h on air was also investigated. For these films the properties could clearly be improved by such treatment. However, by using lower arc currents and higher oxygen partial pressure during the ion plating process, immediately dense and environmental stable films with good optical as well as mechanical properties could be achieved without post deposition heat treatment. All the results obtained will be presented in graphs and diagrams.  相似文献   

3.
In this work we present an ultra-low temperature method for the oxidation of an amorphous silicon-carbide-nitride (SiCN) material. The SiCN is deposited on silicon substrates by plasma enhanced chemical vapor deposition using CH4, SiH4, and N2 chemistry. The physical and chemical properties are characterized for the as-deposited SiCN and post-oxidized films are discussed. The SiCN film is exposed to oxygen plasma, where it undergoes a chemical transformation into a binary SiO2 material system. A 1.7 nm/min oxidation rate is typical for this process and compares favorably to oxidation methods utilizing much higher temperatures. The substrate temperature remains extremely low throughout the oxidation process, Ts < 200 °C. Changes in film stress, optical constants, film thickness, surface roughness, and film density are measured. Chemical analysis by X-ray photoelectron spectroscopy is reported for both the as-deposited and oxidized film and confirms the resultant film to be the chemical equivalent of thermally grown SiO2. We discuss applications specifically targeted to the conversion of SiCN to SiO2.  相似文献   

4.
Pr-Fe-B single layer and [PrFeBx/Cu]n films were prepared by magnetron sputtering on Si substrate heated at 650 °C. The influence of the composition and thickness of Cu spacer layer on the structure and magnetic properties of films with out-of-plane orientation are investigated. The [PrFeBx/Cu]n films present an enhanced coercivity and a lower remanence, in comparison with the results of Pr-Fe-B single layer. The coercivity Hc⊥ of about 19.7 kOe and the remanence ratio Mr/Ms of about 0.90 are achieved in the Mo(50 nm) / [PrFeB(300 nm) / Cu(2 nm)]2 / Mo(50 nm) film.  相似文献   

5.
Depending on the resistivity and transmittance, transparent conductive oxides (TCO) are widely used in thin film optoelectronic devices. Thus doped In2O3 (ITO), ZnO, SnO2 are commercially developed. However, the deposition process of these films need sputtering and/or heating cycle, which has negative effect on the performances of the organic devices due to the sputtering and heat damages. Therefore a thermally evaporable, low resistance, transparent electrode, deposited onto substrates room temperature, has to be developed to overcome these difficulties. For these reasons combination of dielectric materials and metal multilayer has been proposed to achieve high transparent conductive oxides. In this work the different structures probed were: MoO3 (45 nm)/Ag (x nm)/MoO3 (37.5 nm), with x = 5-15 nm. The measure of the electrical conductivity of the structures shows that there is a threshold value of the silver thickness: below 10 nm the films are semiconductor, from 10 nm and above the films are conductor. However, the transmittance of the structures decreases with the silver thickness, therefore the optimum Ag thickness is 10 nm. A structure MoO3 (45 nm)/Ag (10 nm)/MoO3 (37.5 nm) resulted with a resistivity of 8 × 10− 5 Ω cm and a transmittance, at around 600 nm, of 80%. Such multilayer structure can be used as anode in organic solar cells according to the device anode/CuPc/C60/Alq3/Al. We have already shown that when the anode of the cells is an ITO film the introduction of a thin (3 nm) MoO3 layer at the interface anode (ITO)/organic electron donor (CuPc) allows reducing the energy barrier due to the difference between the work function of ITO and the highest occupied molecular orbital of CuPc [1]. This property has been used in the present work to achieve a high hole transfer efficiency between the CuPc and the anode. For comparison MoO3/Ag/MoO3/CuPc/C60/Alq3/Al and ITO/MoO3/CuPc/C60/Alq3/Al solar cells have been deposited in the same run. These devices exhibit efficiency of the same order of magnitude.  相似文献   

6.
Transparent conducting ZnO:Al and ZnO films of 380-800 nm thickness were deposited on glass substrates by filtered vacuum arc deposition (FVAD), using a cylindrical Zn cathode doped with 5-6 at.% Al or a pure Zn cathode in oxygen background gas with pressure P = 0.4-0.93 Pa. The crystalline structure, composition and electrical and optical properties of the films were studied as functions of P. The films were stored under ambient air conditions and the variation of their resistance as function of storage time was monitored over a period of several months.The Al concentration in the film was found to be 0.006-0.008 at.%, i.e., a few orders of magnitude lower than that in the cathode material. However, this low Al content influenced the film resistivity, ρ, and its stability. The resistivity of as-deposited ZnO:Al films, ρ = (6-8) × 10− 3 Ω cm, was independent of P and lower by a factor of 2 in comparison to that of the ZnO films deposited by the same FVAD system. The ρ of ZnO films 60 days after deposition increased by a factor of ∼ 7 with respect to as-deposited films. The ZnO:Al films deposited with P = 0.47-0.6 Pa were more stable, their ρ first slowly increased during the storage time (1.1-1.4 times with respect to as-deposited films), and then stabilized after 30-45 days.  相似文献   

7.
Epitaxial trilayer films of La0.67Sr0.33MnO3 (LSMO)/La0.75MnO3 (L0.75MO)/La0.67Sr0.33MnO3 (LSMO) have been prepared on (0 0 1) oriented LaAlO3 substrates by dc magnetron sputtering. The structure and MR are studied. All as-deposited trilayer films exhibit a semiconductor to metal transition at temperature ranging from 116 to 185 K. The MR is also shown to be dependent on the thickness of the middle oxide layer. A maximum MR value of 32% (ΔR/R0) has been obtained at 132 K under 0.4 T magnetic field for a LSMO (300 nm)/L0.75MO (70 nm)/LSMO (300 nm) trilayer film. The MR of trilayer film prefers to that of both LSMO and L0.75MO single layer films.  相似文献   

8.
CoFe2O4 thin films of different thicknesses were grown on SrTiO3 substrates. The X-ray diffraction analysis and atomic force microscopy indicated both epitaxy and a granular microstructure. We studied the magnetic properties of these films as a function of oxygen post-annealing and film thickness. All as-deposited films exhibited similar magnetic properties with saturated magnetization (Ms) of approximately 50% of the bulk Ms, (80 Am2 kg− 1). After the post-annealing the Ms changes as a consequence of crystallographic restructuring of the film. Cation ordering in 100 nm thick films reduces Ms, whereas re-oxidation increases Ms for thinner films. 13 nm films, annealed for 1 h, reach the bulk Ms. For even thinner films the quantum-size effect reduces Ms. For a synthesis of ≥ 30 nm films an annealing cycle after deposition of every 15 nm layer is recommended.  相似文献   

9.
Large area Ba1 − xSrxTiO3 (BST) thin films with x = 0.4 or x = 0.5 were deposited on 75 mm diameter Si wafers in a pulsed laser deposition (PLD) chamber enabling full-wafer device fabrication using standard lithography. The deposition conditions were re-optimized for large PLD chambers to obtain uniform film thickness, grain size, crystal structure, orientation, and dielectric properties of BST films. X-ray diffraction and microstructural analyses on the BST films grown on Pt/Au/Ti electrodes deposited on SiO2/Si wafers revealed films with (110) preferred orientation with a grain size < 100 nm. An area map of the thickness and crystal orientation of a BST film deposited on SiO2/Si wafer also showed (110) preferred orientation with a film thickness variation < 6%. Large area BST films were found to have a high dielectric tunability of 76% at an electric field of 400 kV/cm and dielectric loss tangent below 0.03 at microwave frequencies up to 20 GHz and a commutation quality factor of ~ 4200.  相似文献   

10.
ZnO:Al thin films varying the thickness from 80 to 110 nm were deposited on polished float zone < 100 > Si wafers by radio frequency magnetron sputtering at 100 °C. To texturize these surfaces with the aim of being used as antireflective coating, a wet etching process based on NH4Cl was applied. Taking into account that the layer thickness was small, the control of the etch parameters such as etchant concentration and etching time was evaluated as a function of the textured film properties. An appropriate control of the etching rate to adjust the final thickness to the 80 nm required for the application was realized. Using NH4Cl concentrations of 10 wt.% and short times of up to 25 s, an increase of the film roughness up to a factor of 5.6 of the as-deposited films was achieved. These optimized textured films showed weighted reflectance values below 15% and considerable better electrical properties than the as-deposited 80 nm-thick ZnO:Al films.  相似文献   

11.
The structural, optical, and electronic properties of thin films of a family of wide band gap (Eg > 2.3 eV) p-type semiconductors Cu3TaQ4 (Q = S or Se) are presented. Thin films prepared by pulsed laser deposition of ceramic Cu3TaQ4 targets and ex-situ annealing of the as-deposited films in chalcogenide vapor exhibit mixed polycrystalline/[100]-directed growth on amorphous SiO2 substrates and strong (100) preferential orientation on single-crystal yttria-stabilized zirconia substrates. Cu3TaS4 (Eg = 2.70 eV) thin films are transparent over the entire visible spectrum while Cu3TaSe4 (Eg = 2.35 eV) thin films show some absorption in the blue. Thin film solid solutions of Cu3TaSe4 − xSx and Cu3TaSe4 − xTex can be prepared by annealing Cu3TaSe4 films in a mixed chalcogenide vapor. Powders and thin films of Cu3TaS4 exhibit visible photoluminescence when illuminated by UV light.  相似文献   

12.
In this study, the influence of post deposition annealing steps (PDA) on the electrical resistivity of evaporated titanium/platinum thin films on thermally oxidised silicon is investigated. Varying parameters are the impact of thermal loading with maximum temperatures up to TPDA = 700 °C and the platinum top layer thickness ranging from 24 nm to 105 nm. The titanium based adhesive film thickness is fixed to 10 nm. Up to post deposition annealing temperatures of TPDA = 450 °C, the film resistivity is linearly correlated with the reciprocal value of the platinum film thickness according to the size effect. Modifications in the intrinsic film stress strongly influence the electrical material parameter in this temperature regime. At TPDA > 600 °C, diffusion of titanium into the platinum top layer and its plastic deformation dominate the electrical behaviour, both causing an increase in film resistivity above average.  相似文献   

13.
Multilayer Cr(1 − x)AlxN films with a total thickness of 2 μm were deposited on high-speed steel by medium frequency magnetron sputtering from Cr and Al-Cr (70 at.% Al) targets. The samples were annealed in air at 400 °C, 600 °C, 800 °C and 1000 °C for 1 hour. Films were characterized by cross-sectional scanning electron microscopy and X-ray diffraction analysis. The grain size of the as-deposited multilayer films is about 10 nm, increasing with the annealing temperature up to 100 nm. Interfacial reactions have clearly changed at elevated annealing temperatures. As-deposited films' hardness measured by nanoindentation is 22.6 GPa, which increases to 26.7 GPa when the annealing temperature goes up to 400 and 600 °C, but hardness decreases to 21.2 GPa with further annealing temperature increase from 600 to 1000 °C. The multilayer film adhesion was measured by means of the scratch test combined with acoustic emission for detecting the fracture load. The critical normal load decreased from 49.7 N for the as-deposited films to 21.2 N for the films annealed at 1000 °C.  相似文献   

14.
Electrochromic organomolybdenum oxide (MoOxCy) films are deposited onto 60 Ω/□ flexible polyethylene terephthalate/indium tin oxide substrates by low temperature plasma-enhanced chemical vapor deposition (PECVD) using a precursor of molybdenum carbonyl vapor, which is carried by argon gas, mixed with oxygen gas and synthesized by radio frequency power at room temperature (23 °C). The MoOxCy films with modified surface morphology and compositions of varying oxygen contents are proven to offer noteworthy electrochromic performance. Porous surface of the MoOxCy film (398 nm thick) provides Li+ ion diffusion coefficient value of 1.7 × 10− 10 cm2/s for Li+ de-intercalation at a potential scan rate of 2 mV/s. High x/y value at high surface composition of oxygen to carbon in the MoOxCy film offers light modulation with transmittance variation of up to 63% and coloration efficiency of 36 cm2/C at a wavelength of 800 nm for 200 cycles of Li+ intercalation and de-intercalation. PECVD-synthesized MoOxCy thin films show promising electrochromic properties for applications in flexible electrochromic devices.  相似文献   

15.
T. Car  N. Radi?  M. ?ekada 《Thin solid films》2009,517(16):4605-2921
The thin films of AlxNb1 − x (95 ≥ x ≥ 20), AlxMox (90 ≥ x ≥ 20) and AlxTa1 − x (95 ≥ x ≥ 20) were prepared by magnetron codeposition at room temperature. The average film thickness was from 325 to 400 nm, depending on the film composition. The structure of the as-deposited films was examined by the X-ray diffraction. The stress of the films was determined from the substrate deformation by the profilometer, and the microhardness (load 2 mN) was examined by the micro- and nano-hardness device. For the purpose of the examination of the hardness, the samples were deposited onto the sapphire wafers, while the examination of the film stress, was performed by using thin glass substrates. For all the Al-(Nb, Mo, Ta) alloy compositions, the microhardness is predominantly under the influence of the harder element, and monotonically decreases with the increase of the aluminum content. However, the microhardness of the amorphous AlTa films was higher than the bulk value of a harder element (Ta) in the alloy. A simple empirical linear relationship between the Vickers hardness, the bulk value hardness of the transition metal (harder element) and the elastic energy fraction of the identation deformation, was established. The elastic energy fraction in the microhardness is also linearly correlated with the stress in films.  相似文献   

16.
The crystal structure of annealed β-In2S3 thin films with different thickness was investigated by X-ray diffraction technique. Lattice parameters, crystallite size and microstrain were calculated. It was found that the lattice parameters are independent on film thickness, while annealing temperatures increase them. Crystallite sizes were increased with the increase of the film thickness and improved by annealing temperatures. In all cases, the microstrains were decreased gradually with the increase in both film thickness and annealing temperatures. Optical properties of β-In2S3 thin films were performed in the spectral range from 400 to 2500 nm to determine the optical constants (n and k), the high frequency dielectric constant, ε, the lattice dielectric constant, εL, and the energy gap. The optical constants were found to be independent on film thickness in the range from 200 to 630 nm. The high frequency dielectric and lattice dielectric constants of the as-deposited film increased by annealing temperatures. The energy gap for the as-deposited In2S3 was found to be 2.60 eV and increased to 2.70 and 2.75 eV by annealing at 423 and 473 K for 1 h, respectively.  相似文献   

17.
Q.G. Chi 《Thin solid films》2009,517(17):4826-4829
Lanthanum-and calcium-modified PbTiO3 (PLCT) ferroelectric thin films were successfully prepared on Pt(111)/Ti/SiO2/Si substrates by pulsed laser deposition. Influence of TiOx seed layer on texture and electric properties of PLCT films was investigated. It is found the PLCT films without seed layer exhibited highly (100)-textured, while using about 9 nm TiOx as seed layer lead to highly (301)-textured. The PLCT film with TiOx seed layer possess higher remnant polarization (Pr = 26 µC/cm2), better pyroelectric coefficient and figure of merit at room temperature (p = 370 µC/m2k, Fd = 190 × 10− 5 Pa− 1/2) than that of film without seed layer. The mechanism of the enhanced electric properties was also discussed.  相似文献   

18.
A.M. Farid  H.E. Atyia  N.A. Hegab 《Vacuum》2005,80(4):284-294
Sb2Te3 films of different thicknesses, in the thickness range 300-620 nm, were prepared by thermal evaporation. X-ray analysis showed that the as-deposited Sb2Te3 films are amorphous while the source powder and annealed films showed a polycrystalline nature. The AC conductivity and dielectric properties of Sb2Te3 films have been investigated in the frequency range 0.4-100 kHz and temperature range 303-373 K. The AC conductivity σAC(ω) was found to obey the power law ωs where s?1 independent of film thickness. The temperature dependence of both AC conductivity and the exponent s can be reasonably well interpreted by the correlated barrier hopping (CBH) model. The experimental results of the dielectric constant ε1 and the dielectric loss ε2 are frequency and temperature dependent and thickness independent. The maximum barrier height WM calculated from dielectric measurements according to the Guintini equation agrees with that proposed by the theory of hopping of charge carriers over a potential barrier as suggested by Elliott for chalcogenide glasses. The effect of annealing at different temperatures on the AC conductivity and dielectric properties was also investigated. Values of σAC, ε1 and ε2 were found to increase with annealing treatment due to the increase of the degree of ordering of the investigated films. The Cole-Cole plots for the as-deposited and annealed Sb2Te3 films have been used to determined the molecular relaxation time τ. The temperature dependence of τ indicates a thermally activated process.  相似文献   

19.
Hot-filament metal oxide deposition (HFMOD) is a variant of conventional hot-filament chemical vapor deposition (HFCVD) recently developed in our laboratory and successfully used to obtain high-quality, uniform films of MOx, WOx and VOx. The method employs the controlled oxidation of a filament of a transition metal heated to 1000 °C or more in a rarefied oxygen atmosphere (typically, of about 1 Pa). Metal oxide vapor formed on the surface of the filament is transported a few centimetres to deposit on a suitable substrate. Key system parameters include the choice of filament material and diameter, the applied current and the partial pressures of oxygen in the chamber. Relatively high film deposition rates, such as 31 nm min− 1 for MoOx, are obtained. The film stoichiometry depends on the exact deposition conditions. MoOx films, for example, present a mixture of MoO2 and MoO3 phases, as revealed by XPS. As determined by Li+ intercalation using an electrochemical cell, these films also show a colouration efficiency of 19.5 cm2 C− 1 at a wavelength of 700 nm. MOx and WOx films are promising in applications involving electrochromism and characteristics of their colouring/bleaching cycles are presented. The chemical composition and structure of VOx films examined using IRRAS (infrared reflection-absorption spectroscopy), RBS (Rutherford backscattering spectrometry) and XPS (X-ray photoelectron spectrometry) are also presented.  相似文献   

20.
A.H. Eid  A.M. Salem  T.M. Dahy 《Vacuum》2008,83(2):401-407
Stoichiometric bulk ingot materials of the ternary mixture Cd(1−x)MnxSe (0.05 ≤ x ≤ 0.9) were prepared by direct fusion of the constituent elements in vacuum sealed silica tubes. X-ray diffraction studies indicate that the investigated samples exhibited a hexagonal structure. The lattice parameters varied linearly with Mn content, following Vegard's law. Thin films were deposited by thermal evaporation from the pre-synthesized ingot material, onto glass substrates. X-ray and electron diffraction studies on the as-deposited and annealed films revealed an amorphous-to-crystalline phase transition at Ta ≈ 423 K. EDAX studies on the prepared films show that the as-deposited films are nearly stoichiometric. The transmittance and reflectance of the deposited Cd(1−x)MnxSe films were measured at normal light incident in the wavelength spectral range 500-2500 nm. Analysis of the transmittance spectra in the entire wavelength range allowed the determination of the refractive index. The dispersion parameters have been calculated, from which the static refractive index as well as static dielecric constant were calculated. Analysis of the absorption coefficient of the investigated films revealed the existence of both the allowed direct and forbidden direct optical transition mechanisms. The corresponding energies were estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号