首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study on the prediction of heat transfer coefficient and pressure drop of refrigerant mixtures is reported. Heat transfer coefficients and pressure drops of prospective mixtures to replace R12 and R22 are predicted on the same cooling capacity basis assuming evaporation in horizontal tubes. Results indicate that nucleate boiling is suppressed at qualities greater than 20% for all mixtures, and evaporation becomes the main heat transfer mechanism. For the same capacity, some mixtures containing R32 and R152a show 8–10% increase in heat transfer coefficients. Some mixtures with large volatility difference exhibit as much as 55% reduction compared to R12 and R22, caused by mass transfer resistance and property degradation due to mixing (32%) and reduced mass flow rates (23%). Other mixtures with moderate volatility difference exhibit 20–30% degradation due mainly to reduced mass flow rates. The overall impact of heat transfer degradation, however, is insignificant if major heat transfer resistance exists in the heat transfer fluid side (air system). If the resistance in the heat transfer fluid side is of the same order of magnitude as that on the refrigerant side (water system), considerable reduction in overall heat transfer coefficient of up to 20% is expected. A study of the effect of uncertainties in transport properties on heat transfer shows that transport properties of liquid affect heat transfer more than other properties. Uncertainty of 10% in transport properties causes a change of less than 6% in heat transfer prediction.  相似文献   

2.
The Redlich-Kwong-Soave equation parameters are calculated in order to predict the thermodynamic properties of the following refrigerants: R14, R23, R13, R13B1, R22, R115, R12, R152a, R142b, R114, R11. It is shown that both forms of this equation may be employed for practical engineering uses over broad temperature and pressure ranges; however the second form gives more reliable results for the examined refrigerants.  相似文献   

3.
The specific heat capacity at constant pressure (cp) of some relevant HFCs as replacements for R12, R502 and R22 was measured. The liquids investigated are binary or ternary mixtures of R134a, R152a, R125, R32 and R143a. Empirical functional relations in polynomial forms between the temperature, specific heat capacity and concentration are established and the coefficients of the polynomial correlations are presented. These equations can be used to calculate the cp-values for the mixtures investigated over the whole concentration range and the predicted properties generally agree with the source data to ca ± 0.1% for the pure substances. The accuracy of the measurements is better than <1% for the pure fluids and <1.5% for the mixtures. Differences between 1 and 2% can occur only at temperatures >40°C and < −50°C.  相似文献   

4.
The Redlich-Kwong-Soave equation parameters are calculated in order to predict the thermodynamic properties of the following refrigerants: R14, R23, R13, R13B1, R22, R115, R12, R152a, R142b, R114, R11. It is shown that both forms of this equation may be employed for practical engineering uses over broad temperature and pressure ranges; however the second form gives more reliable results for the examined refrigerants.  相似文献   

5.
Six local composition models of the thermodynamic behaviour of mixtures are described. Using data from the literature and a non-linear regression analysis, a comparison of the predictive abilities of the models is undertaken for R12, R22, R134a and R125 with various oils. The Wilson and Heil equations provide the most consistent results, with the Heil equation providing a modest improvement over the Wilson model. Using a 95% confidence interval, the Heil equation predicted the behaviour of R12 with a paraffinic mineral oil to within 3.1%; its worst-case 2-σ error was 10.4% (R22 with a polyol ester oil), and its average 2-σ error for all of the mixtures was 6.2%. Using model parameters and error estimates from the regression analyses, pressure-temperature-concentration behaviour for these mixtures can be predicted for system design and simulation.  相似文献   

6.
Convective boiling heat transfer coefficients of pure refrigerants (R22, R32, R134A, R290, and R600a) and refrigerant mixtures (R32/R134a, R290/R600a, and R32/R125) are measured experimentally and compared with Gungor and Winterton correlation. The test section is made of a seamless stainless steel tube with an inner diameter of 7.7 mm and is uniformly heated by applying electric current directly to the tube. The exit temperature of the test section was kept at 12°C ± 0.5°C for all refrigerants in this study. Heat fluxes are varied from 10 to 30 kW m−2 and mass fluxes are set to the discrete values in the range of 424–742 kg m−2 s−1 for R22, R32, R134a, R32/R134a, and R32/R125; 265–583 kg m−2 s−1 for R290, R600a, and R290/R600a. Heat transfer coefficients depend strongly on heat flux at a low quality region and become independent as quality increases. The Gungor and Winterton correlation for pure substances and the Thome-Shakil modification of this correlation for refrigerant mixtures overpredicts the heat transfer coefficients measured in this study.  相似文献   

7.
The effect of mixture composition on the heat transfer coefficient during forced convection condensation of R22 and R12 mixtures inside a horizontal tube has been investigated. The effect of mixture composition is complex and the heat transfer coefficients have not been found to vary in a simple manner with the composition. The generalized correlation which best fits the R22/R12 mixture heat transfer data is:  相似文献   

8.
Non-azeotropic refrigerant mixtures (NARMs) are investigated for a two-temperature level heat exchange process found in a domestic refrigerator-freezer. Ideal (constant air temperature) heat exchange processes are assumed. The results allow the effects of intercooling between the evaporator refrigerant stream and the condenser outlet stream to be examined in a systematic manner. For the conditions studied, an idealized NARM system will have a limiting coefficient of performance (COP) that is less than that of the best performing pure refrigerant component. However, for non-ideal heat exchange processes (gliding air temperature), the NARM-based system can have a higher limiting COP than a system running on either pure NARM component. Intercooling significantly affects the COP of NARM-based systems; however, depending on the location of ‘pinch points’ in the heat exchangers, only one intercooling heat exchanger may be needed to obtain a NARM's maximum refrigerator COP. The results are presented for mixtures of R22–R142b, R22–R123 and R32–R142b.  相似文献   

9.
A practical representation for the transport coefficients of pure refrigerants R32, R125, R134a, and R125+R32 mixtures is presented which is valid in the vapor–liquid critical region. The crossover expressions for the transport coefficients incorporate scaling laws near the critical point and are transformed to regular background values far away from the critical point. The regular background parts of the transport coefficients of pure refrigerants are obtained from independently fitting pure fluid data. For the calculation of the background contributions of the transport coefficients in binary mixtures, corresponding-states correlations are used. The transport property model is compared with thermal conductivity and thermal diffusivity data for pure refrigerants, and with thermal conductivity data for R125+R32 mixtures. The average relative deviations between the calculated values of the thermal conductivity and experimental data are less than 4–5% at densities ρ0.1ρc and temperatures up to T=2Tc.  相似文献   

10.
This paper discusses prediction methods which are able to provide the dynamic viscosity, μ, of liquids along the saturation line. The best empirical or semi-empirical correlations existing in the literature are critically presented and checked to outline the usefulness of the new prediction method presented in this paper. Fifty substances (organic compounds, inorganic compounds and pure elements) are examined to show the reliability of the new simple equation which contains three factors (A, B and C) related to the molecular structure and the most important physical properties. The general scheme of prediction is then applied to the particular case of refrigerant fluids belonging to the methane and ethane families and to their binary mixtures. The accuracy of the proposed prediction method is checked using the most recent and reliable experimental dynamic viscosity data available in literature, and the mean and the maximum deviations between predicted and experimental μ values are shown to be less than 3 and 8%, respectively.  相似文献   

11.
A composite plot relating evaporating temperature TEV, condensing temperature TCO, pressure ratio (PR) and theoretical Rankine coefficient of performance (COP)RR is presented for HFC134a. The theoretical performance of HFC134a has been comparatively assessed along with HCFC22, HFC134, HFC152a, HCFC124 and HCFC142b as alternatives to CFC12 by using the standard refrigeration parameters including pressure ratio, specific compressor displacement, theoretical Rankine coefficient of performance, shaft power per ton of refrigeration. A discussion of the practical implications of the choice of the alternatives to CFC12 is also presented.  相似文献   

12.
The surface tension of the refrigerants R32, R125, R134a, R143a and R152a, as well as the binary refrigerant mixtures R32-R125, R32-R134a, R125-R134a, R125-R143a, R125- R152a, R143a-R134a and R134a-R152a, and the commercially available ternary mixtures R404A and R407C was measured across the temperature range from −50 to 60°C using a measuring unit based on the capillary rise method. Different formulations for calculation of the surface tension of the binary and ternary mixtures on the basis of the surface tension of the pure refrigerants were tested. With an approach based on mass proportions in the mixture, a good correspondence between the measured and calculated values was achieved.  相似文献   

13.
The optimisation of a jet cooling system using refrigerant mixtures as substitutes of pure refrigerants has been investigated. A steady-state simulation program, for given temperatures of the sources, integrating simple models of each component has been developed. A Peng-Robinson equation of state assuming equality of the fugacities of the two phases was used to model the thermodynamic properties of the vapour and liquid-vapour equilibrium. The refrigerants investigated in this study are: the pure refrigerants R142b, R152a, RC318, R124, R134a, R22 and the binary refrigerants R22/RC318, R22/R142b, R22/R124, R22/R152a, R22/R134a, R134a/R142b, R152a/R142b and R134a/R152a. Results show that the use of a binary mixture does not always increase the performance of system. Generally, when the mixture is strongly zeotropic (e.g.: R22/RC318), the cooling efficiency of the system decreases. However, when the mixture is mildly zeotropic (e.g. R134a/R142b) or almost azeotropic (e.g. R134a/R152a), efficiency and energetic efficiency increase.  相似文献   

14.
Previous work in developing environmentally acceptable alternatives to fully halogenated chlorofluorocarbons (CFCs) has concentrated almost exclusively on methane and ethane based compounds. A review of toxicity and boiling point data for a large variety of fluorine compounds reveals additional classes of compounds which may be suitable as refrigerants. Fluorinated derivatives of dimethyl ether and cyclopropane appear to have both low toxicity and suitable boiling points. They also have a relatively simple structure which means that they should have a reasonably good cycle efficiency. Propane based CFCs may also be useful if simpler compounds prove to be unacceptable. Specific compounds that warrant further investigation include bis-difluoromethyl ether (for R114), difluoromethyl dichlofluoromethyl ether (for R113), difluoromethyl fluoromethyl ether (for R11) and hexafluorocyclopropane (for R12). In addition, the compound trifluoroiodomethane may be a useful alternative to R13B1 in fire extinguishers. A cooperative programme of synthesizing and evaluating fluorinated derivatives of dimethyl ether and cyclopropane is recommended.  相似文献   

15.
This paper presents a modified dimensionless neural network correlation of refrigerant mass flow rates through adiabatic capillary tubes and short tube orifices. In particular, CO2 transcritical flow is taken into account. The definition of neural network input and output dimensionless parameters is grounded on the homogeneous equilibrium model and extended to supercritical inlet conditions. 2000 sets of experimental mass flow-rate data of R12, R22, R134a, R404A, R407C, R410A, R600a and CO2 (R744) in the open literature covering capillary and short tube geometries, subcritical and supercritical inlet conditions are collected for neural network training and testing. The comparison between the trained neural network and experimental data reports 0.65% average and 8.2% standard deviations; 85% data fall into ±10% error band. Particularly for CO2, the average and standard deviations are −2.5% and 6.0%, respectively. 90% data fall into ±10% error band.  相似文献   

16.
A 1-D analysis for the prediction of ejector performance at critical-mode operation is carried out in the present study. Constant-pressure mixing is assumed to occur inside the constant-area section of the ejector and the entrained flow at choking condition is analyzed. We also carried out an experiment using 11 ejectors and R141b as the working fluid to verify the analytical results. The test results are used to determine the coefficients, ηp, ηs, φp and φm defined in the 1-D model by matching the test data with the analytical results. It is shown that the1-D analysis using the empirical coefficients can accurately predict the performance of the ejectors.  相似文献   

17.
Azeotropy in the natural and synthetic refrigerant mixtures   总被引:1,自引:1,他引:0  
A novel approach for the prediction of azeotrope formation in a mixture that does not require vapour–liquid equilibrium calculations is developed. The method employs neural networks and global phase diagram methodologies to correlate azeotropic data for binary mixtures based only on critical properties and acentric factor of the individual components in refrigerant mixtures. Analytical expressions to predict azeotropy and double azeotropy phenomena in terms of critical parameters of pure components and interaction parameters k12, are derived using global phase diagram conception. Modeling of thermodynamic and phase behavior has been carried out on the base of the Redlich–Kwong–Soave and the Peng–Robinson equations of state (EoS). Local mapping method is introduced to describe thermodynamically consistently an accurate saturation curve of refrigerants by three parameters EoS. Optimized neural network was chosen to achieve a complete coincidence of predicted and experimentally observable azeotropic states for training, validation, and test sets simultaneously. All possible cases of azeotropy appearance/absence in the more than 1500 industrially significant binary mixtures of natural and synthetic refrigerants are presented.  相似文献   

18.
Simulation analyses for a vapour compression heat pump cycle using nonazeotropic refrigerant mixtures (NARMs) of R22 and R114 are conducted under the condition that the heat pump thermal output and the flow rate and inlet temperatures of the heat sink and source water are given. The heat transfer coefficients of the condensation and evaporation are calculated with empirical correlations proposed by the authors. The validity of the evaluation method and the correlations is demonstrated by comparison with experimental data. The relations between the coefficient of performance (COP) and composition are shown under two conditions: (1) the constant heat transfer length of the condenser and evaporator; and (2) the constant temperature of refrigerant at the heat exchanger inlet. The COP of the NARMs is higher than that of pure refrigerant when the heat transfer lengths of the condenser and evaporator are sufficiently long.  相似文献   

19.
This paper presents experimental data for the viscosity of solutions of refrigerant R600a (isobutane) with mineral compressor oils Azmol, Reniso WF 15A, and R245fa (1,1,1,3,3-pentafluoropropane) with polyolester compressor oil Planetelf ACD 100 FY on the saturation line. The experimental data were obtained for solution of R600a with mineral compressor oil Azmol in the temperature range from 294.7 to 338.1 K and the concentration range 0.04399 ≤ wR ≤ 0.3651, the solution of R600a with mineral compressor oil Reniso WF 15A at the temperatures from 285.8 to 348.4 K and the concentration range 0.03364 ≤ wR ≤ 0.2911, the solution of R245fa with polyolester compressor oil Planetelf ACD 100 FY at the temperatures from 309 to 348.2 and the concentration range 0.06390 ≤ wR ≤ 0.3845. The viscosity was measured using a rolling ball method. The method for prediction of the dynamic viscosity for refrigerant/oil solutions is reported.  相似文献   

20.
This paper reports a useful set of equations which enables the consistent and reliable calculation of thermodynamic properties. This set of equations consists of a vapour pressure equation, an equation for the gas phase p, v, T properties, an equation giving the saturated liquid densities and an equation for the specific heat capacity in the ideal gas domain. These equations are of a simple structure because the critical region is excluded. Therefore, for a preliminary investigation only few experimental data points are required for parameter regression, which makes this set of equations suitable for ‘new’ refrigerants. The relationships for enthalpy and entropy are derived from these equations and evaluation procedures are summarized. Examples are given for the refrigerants R134a and R152a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号