首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
Cyclic AMP is a major second messenger that inhibits the brush border Na+/H+ exchanger NHE3. We have previously shown that either of two related regulatory proteins, E3KARP or NHERF, is necessary for the cAMP-dependent inhibition of NHE3. In the present study, we characterized the interaction between NHE3 and E3KARP using in vitro binding assays. We found that NHE3 directly binds to E3KARP and that the entirety of the second PSD-95/Dlg/ZO-1 (PDZ) domain plus the carboxyl-terminal domain of E3KARP are required to bind NHE3. E3KARP binds an internal region within the NHE3 C-terminal cytoplasmic tail, defining a new mode of PDZ domain interaction. Analyses of cellular distribution of NHE3 and E3KARP expressed in PS120 fibroblasts show that NHE3 and E3KARP are co-localized on the plasma membrane, but not in a distinct juxtanuclear compartment in which NHE3 is predominantly expressed. The distributions of NHE3 and E3KARP were not affected by treatment with 8-bromo-cAMP. As shown earlier for the human homolog of NHERF, we also found that the cytoskeletal protein ezrin binds to the carboxyl-terminal domain of E3KARP. These results are consistent with the possibility that E3KARP and NHERF may function as scaffold proteins that bind to both NHE3 and ezrin. Since ezrin is a protein kinase A anchoring protein, we suggest that the scaffolding function of E3KARP binding to both ezrin and NHE3 localizes cAMP-dependent protein kinase in the vicinity of the cytoplasmic domain of NHE3, which is phosphorylated by elevated cAMP.  相似文献   

2.
Identification of a mitochondrial Na+/H+ exchanger   总被引:1,自引:0,他引:1  
The electroneutral exchange of protons for Na+ and K+ across the mitochondrial inner membrane contributes to organellar volume and Ca2+ homeostasis. The molecular nature of these transporters remains unknown. In this report, we characterize a novel gene (YDR456w; renamed NHA2) in Saccharomyces cerevisiae whose deduced protein sequence is homologous to members of the mammalian Na+/H+ exchanger gene family. Fluorescence microscopy showed that a Nha2-green fluorescent protein chimera colocalizes with 4',6-diamidino-2-phenylindole staining of mitochondrial DNA. To assess the function of Nha2, we deleted the NHA2 gene by homologous disruption and found that benzamil-inhibitable, acid-activated 22Na+ uptake into mitochondria was abolished in the mutant strain. It also showed retarded growth on nonfermentable carbon sources and severely reduced survival during the stationary phase of the cell cycle compared with the parental strain, consistent with a defect in aerobic metabolism. Sequence comparisons revealed that Nha2 has highest identity to a putative Na+/H+ exchanger homologue (KIAA0267; renamed NHE6) in humans. Northern blot analysis demonstrated that NHE6 is ubiquitously expressed but is most abundant in mitochondrion-rich tissues such as brain, skeletal muscle, and heart. Fluorescence microscopy showed that a NHE6-green fluorescent protein chimera also accumulates in mitochondria of transfected HeLa cells. These data indicate that NHA2 and NHE6 encode homologous Na+/H+ exchangers and suggest they may be important for mitochondrial function in lower and higher eukaryotes, respectively.  相似文献   

3.
The NHE3 isoform of the Na+/H+ exchanger localizes to both the plasmalemmal and endosomal compartments in polarized epithelial and transfected Chinese hamster ovary (AP-1) cells. It is unclear how the distribution of NHE3 between these compartments is regulated. In this study, we examined the potential involvement of phosphatidylinositol 3'-kinase (PI3-K) in regulating the activity and distribution of NHE3, as this lipid kinase has been implicated in modulating vesicular traffic in the endosomal recycling pathway. Wortmannin and LY294002, both potent inhibitors of PI3-K, markedly inhibited NHE3-mediated H+ extrusion across the plasma membrane in a concentration- and time-dependent manner. The subcellular distribution of the antiporters was monitored by transfecting epitope-tagged NHE3 into AP-1 cells. In parallel with the inhibition of transport, PI3-K antagonists induced a pronounced loss of NHE3 from the cell surface and its accumulation in an intracellular compartment, as assessed by immunofluorescence microscopy and enzyme-linked immunosorbent assays. Further analysis using cells transfected with antiporters bearing an external epitope tag revealed that the redistribution reflected primarily a decrease in the rate of recycling of intracellular NHE3 to the cell surface. The wortmannin-induced inhibition and redistribution of NHE3 were prevented when cells were incubated at 4 degreesC, consistent with the known temperature dependence of the endocytic process. These observations demonstrate that NHE3 activity is controlled by dynamic endocytic and recycling events that are modulated by PI3-K.  相似文献   

4.
The ubiquitous plasma membrane Na+/H+ exchanger (NHE1) is rapidly activated in response to various extracellular signals. To understand how the intracellular Ca2+ is involved in this activation process, we investigated the effect of Ca2+ ionophore ionomycin on activity of the wild-type or mutant NHE1 expressed in the exchanger-deficient fibroblasts (PS120). In wild-type transfectants, a short (up to 1 min) incubation with ionomycin induced a significant alkaline shift (approximately 0.2 pH unit) in the intracellular pH (pHi) dependence of the rate of 5-(N-ethyl-N-isopropyl) amiloride-sensitive 22Na+ uptake, without changes in the cell volume and phosphorylation state of NHE1. Mutations that prevented calmodulin (CaM) binding to a high affinity binding region (region A, amino acids 636-656) rendered NHE1 constitutively active by inducing a similar alkaline shift in pHi dependence of Na+/H+ exchange. These same mutations abolished the ionomycin-induced NHE1 activation. These data suggest that CaM-binding region A functions as an "autoinhibitory domain" and that Ca2+/CaM activates NHE1 by binding to region A and thus abolishing its inhibitory effect. Furthermore, we found that a short stimulation with thrombin and ionomycin had apparently no additive effects on the alkaline shift in the pHi dependence of Na+/H+ exchange and that deletion of region A also abolished such an alkaline shift induced by a short thrombin stimulation. The results strongly suggest that the early thrombin response and the ionomycin response share the same activation mechanism. Based on these data and the results shown in the accompanying paper (Bertrand, B., Wakabayashi, S., Ikeda, T., Pouysségur, J., and Shigekawa, M. (1994) J. Biol. Chem. 269, 13703-13709), we propose that CaM is one of the major "signal transducers" that mediate distinct extracellular signals to the "pHi sensor" of NHE1.  相似文献   

5.
Chronic progressive renal function loss is a main cause of long-term graft loss after initially successful renal transplantation. Transplanted kidneys share some risk factors for renal function loss, such as hypertension or proteinuria, with diseased native kidneys. Recently, it has been shown that renal function loss is influenced by the angiotensin-converting enzyme (ACE) (insertion/deletion [I/D]) genotype in renal disease in diseased native kidneys. This study examines whether donor or recipient ACE (I/D) genotype is a risk factor for graft loss after renal transplantation. To avoid bias by acute events, graft survival was studied, with patients dying with a functioning graft censored, starting at 12 mo after transplantation in a cohort of 367 patients transplanted between 1987 and 1994 with at least 2 yr of follow-up. Mean follow-up was 58 mo. ACE (I/D) genotype was determined by PCR on stored donor and recipient lymphocytes. Neither donor nor recipient ACE (I/D) genotype was associated with graft survival. However, Cox proportional hazards analysis identified recipient, but not donor, ACE (I/D) genotype D-allele to be independently associated with a shorter time to graft loss in subgroups of patients at high risk for graft loss defined by a creatinine clearance <50 ml/min (n = 108, P = 0.017) or proteinuria > or =0.5 g/24 h at 12 mo (n = 97, P = 0.0051) after transplantation. In conclusion, recipient ACE (I/D) genotype was associated with time to graft loss in a specific high-risk subgroup of the study population. This suggests that the effect of ACE (I/D) genotype on graft survival only becomes apparent when other risk factors are simultaneously present.  相似文献   

6.
7.
8.
Clinical follow-up data of 276 colorectal adenocarcinoma patients treated in Kuopio University Hospital between 1976 and 1986 and followed up for a mean of 14 years were analysed. The clinical findings were correlated with tumour-infiltrating lymphocytes (TILs) and with histological and quantitative factors including nuclear parameters and volume-corrected mitotic index. In univariate survival analysis, TNM classification, Dukes' stage, histological grade, and TILs were significant predictors of survival. TNM classification, Dukes' stage, and TILs also predicted recurrence-free survival. In multivariate analysis, TILs were an independent prognostic factor of survival in all cases, as well as in patients with T1-4N0-3M0 and T1-4N1-3M1. TILs also independently predicted recurrence-free survival. TILs can provide important prognostic information in colorectal cancer to be used in evaluating for adjuvant therapy in different tumour stages.  相似文献   

9.
Src kinases and protein kinase C (PKC) have been well studied for their role in oncogenic and normal cellular processes. Herein we report on a novel regulatory pathway mediated by the interaction of PKC-delta with p53/56Lsy (Lyn) and with p60Src (Src) that results in the phosphorylation and increased activity of Lyn and Src. In the RBL-2H3 mast cell line, the interaction of PKC-delta with Lyn required the activation of the high affinity receptor for IgE (FcsigmaRI) while the interaction with Src was constitutive. Increased complex formation of PKC-delta with Lyn or Src led to increased serine phosphorylation and activity of the Src family kinases. Conversely, Lyn was found to phosphorylate Lyn-associated and recombinant PKC-delta in vitro and the tyrosine 52 phosphorylated PKC-delta was recruited to associate with the Lyn SH2 domain. The constitutive association of PKC-delta with Src did not result in the tyrosine phosphorylation of PKC-delta prior to or after FsigmaRI engagement. However in cells over-expressing PKC-delta, FsigmaRI engagement resulted in the dramatic inhibition of Src activity and some inhibition of Lyn activity. Thus, the interaction and cross-talk of PKC-delta with Src family kinases suggests a novel and inter-dependent mechanism for regulation of enzymatic activity that may serve an important role in cellular responses.  相似文献   

10.
We identified amino acid residues important for activity of sod2, the Na+/H+ antiporter of Schizosaccharomyces pombe. We mutated all eight His residues of sod2 into Arg. Only His367-->Arg affected function and resulted in complete inability of sod2 to allow growth of S. pombe in LiCl-containing medium. Mutant S. pombe (H367R) could not expel sodium in acidic (pH 4.0) medium and were defective in their ability to alkalinize external medium. When His367 was replaced by Asp, sodium export of S. pombe was suppressed at acidic pH while the sodium-dependent proton influx at pH 6.1 was increased compared to wild type. We also mutated three residues conserved in putative membrane regions of various eukaryotic and prokaryotic Na+/H+ exchangers. S. pombe containing Asp241-->Asn and Asp266, 267-->Asn mutations had greatly impaired growth in LiCl-containing medium. In addition, sodium-dependent proton influx at external pH 6. 1 was impaired. Sodium export from S. pombe cells at external pH 4.0 was also almost completely abolished by the D266,267N mutation; however, the D241N mutant protein retained almost normal Na+ export. The results demonstrate that His367, Asp241, and Asp266,267 are important in the function of the eukaryotic Na+/H+ exchanger sod2.  相似文献   

11.
Preferential phosphorylation of specific proteins by cAMP-dependent protein kinase (PKA) may be mediated in part by the anchoring of PKA to a family of A-kinase anchor proteins (AKAPs) positioned in close proximity to target proteins. This interaction is thought to depend on binding of the type II regulatory (RII) subunits to AKAPs and is essential for PKA-dependent modulation of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptor, the L-type Ca2+ channel, and the KCa channel. We hypothesized that the targeted disruption of the gene for the ubiquitously expressed RIIalpha subunit would reveal those tissues and signaling events that require anchored PKA. RIIalpha knockout mice appear normal and healthy. In adult skeletal muscle, RIalpha protein levels increased to partially compensate for the loss of RIIalpha. Nonetheless, a reduction in both catalytic (C) subunit protein levels and total kinase activity was observed. Surprisingly, the anchored PKA-dependent potentiation of the L-type Ca2+ channel in RIIalpha knockout skeletal muscle was unchanged compared with wild type although it was more sensitive to inhibitors of PKA-AKAP interactions. The C subunit colocalized with the L-type Ca2+ channel in transverse tubules in wild-type skeletal muscle and retained this localization in knockout muscle. The RIalpha subunit was shown to bind AKAPs, although with a 500-fold lower affinity than the RIIalpha subunit. The potentiation of the L-type Ca2+ channel in RIIalpha knockout mouse skeletal muscle suggests that, despite a lower affinity for AKAP binding, RIalpha is capable of physiologically relevant anchoring interactions.  相似文献   

12.
13.
In this study we examine regulation of expression of the Na+/H+ exchanger promoter in L6 and NIH 3T3 cells. We have identified a highly conserved poly(dA dT)-rich region that appears to be important in regulation of expression of the NHE1 gene. Deletion or mutation of this region results in dramatic decreases in promoter activity in both L6 and NIH 3T3 cells. In addition, DNase I footprinting experiments demonstrated that this region is protected by nuclear extracts from both cell types, and gel mobility shift assays showed that a protein or proteins specifically binds to the poly(dA dT)-rich element. Using Southwestern blotting, we determined that a 33-kDa protein binds to the poly(dA dT)-containing region. Mutations that abolished protein binding to this element diminished activity of the promoter. Insertion of the poly(dA dT)-rich element into a plasmid containing the SV40 promoter demonstrated that this element can also enhance the activity of a foreign promoter. Together, the results we have presented here show that the poly(dA dT)-rich region is important in regulation of NHE1 expression in different cell types.  相似文献   

14.
Increased peripheral blood cell Na-H exchange (NHE) and erythrocyte Na-Li countertransport activity have been reported in hypertension and diabetic nephropathy and correlated with increased activity of the renal brush border Na-H exchanger. A relationship between cation exchange activities of blood cells and renal brush border membranes might exist if both were mediated by the same NHE isoform. We generated isoform-specific antibodies to compare the expression of NHE1 and NHE3 in peripheral blood cell membranes and renal cortical membrane vesicles. An NHE1-specific monoclonal antibody reacted with a 199- to 110-kD protein in basolateral membrane fractions isolated from rabbit and rat kidney. NHE1 protein expression was also detected in erythrocytes, platelets, and lymphocytes isolated from rabbit and rat. Two polyclonal antisera generated against nonoverlapping portions of NHE3 reacted with proteins of 82 and 85 kD in brush border membrane fractions isolated from rabbit and rat kidney, respectively, but failed to detect NHE3 expression in blood cells. These data do not support the hypothesis that Na-H exchanger of Na-Li countertransport in blood cells takes place via the renal brush border membrane NHE isoform, namely NHE3.  相似文献   

15.
Increased Na+/H+ antiport activity has been implicated in the pathogenesis of hypertension and vascular disease in diabetes mellitus. The independent effect of elevated extracellular glucose concentrations on Na+/H+ antiport activity in cultured rat vascular smooth muscle cells (VSMC) was thus examined. Amiloride-sensitive 22Na+ uptake by VSMC significantly increased twofold after 3 and 24 h of exposure to high glucose medium (20 mM) vs. control medium (5 mM). Direct glucose-induced Na+/H+ antiport activation was confirmed by measuring Na(+)-dependent intracellular pH recovery from intracellular acidosis. High glucose significantly increased protein kinase C (PKC) activity in VSMC and inhibition of PKC activation with H-7, staurosporine, or prior PKC downregulation prevented glucose-induced increases in Na+/H+ antiport activity in VSMC. Northern analysis of VSMC poly A+ RNA revealed that high glucose induced a threefold increase in Na+/H+ antiport (NHE-1) mRNA at 24 h. Inhibiting this increase in NHE-1 mRNA with actinomycin D prevented the sustained glucose-induced increase in Na+/H+ antiport activity. In conclusion, elevated glucose concentrations significantly influence vascular Na+/H+ antiport activity via glucose-induced PKC dependent mechanisms, thereby providing a biochemical basis for increased Na+/H+ antiport activity in the vascular tissues of patients with hypertension and diabetes mellitus.  相似文献   

16.
Sodium tolerance in yeast is disrupted by mutations in calcineurin, a Ca2+/calmodulin-dependent protein phosphatase, which is required for modulation of Na+ uptake and efflux mechanisms. Five Na+-tolerant mutants were isolated by selecting for suppressors of calcineurin mutations, and mapped to the PMA1 gene, encoding the plasma membrane H+-ATPase. One mutant, pma1-alpha4, which has the single amino acid change Glu367 --> Lys at a highly conserved site within the catalytic domain of the ATPase, was analyzed in detail to determine the mechanism of Na+ tolerance. After exposure to Na+ in the culture medium, 22Na influx in the pma1 mutant was reduced 2-fold relative to control, consistent with a similar decrease in ATPase activity. Efflux of 22Na from intact cells was relatively unchanged in the pma1 mutant. However, selective permeabilization of the plasma membrane revealed that mutant cells retained up to 80% of intracellular Na+ within a slowly exchanging pool. We show that NHX1, a novel gene homologous to the mammalian NHE family of Na+/H+ exchangers, is required for Na+ sequestration in yeast and contributes to the Na+-tolerant phenotype of pma1-alpha4.  相似文献   

17.
Protein kinase D (PKD) is activated by phosphorylation in intact cells stimulated by phorbol esters, cell permeant diacylglycerols, bryostatin, neuropeptides, and growth factors, but the critical activating residues in PKD have not been identified. Here, we show that substitution of Ser744 and Ser748 with alanine (PKD-S744A/S748A) completely blocked PKD activation induced by phorbol-12,13-dibutyrate (PDB) treatment of intact cells as assessed by autophosphorylation and exogenous syntide-2 peptide substrate phosphorylation assays. Conversely, replacement of both serine residues with glutamic acid (PKD-S744E/S748E) markedly increased basal activity (7.5-fold increase compared with wild type PKD). PKD-S744E/S748E mutant was only slightly further stimulated by PDB treatment in vivo, suggesting that phosphorylation of these two sites induces maximal PKD activation. Two-dimensional tryptic phosphopeptide analysis obtained from PKD mutants immunoprecipitated from 32P-labeled transfected COS-7 cells showed that two major spots present in the PDB-stimulated wild type PKD or the kinase-dead PKD-D733A phosphopeptide maps completely disappeared in the kinase-deficient triple mutant PKD-D733A/S744E/S748E. Our results indicate that PKD is activated by phosphorylation of residues Ser744 and Ser748 and thus provide the first example of a non-RD kinase that is up-regulated by phosphorylation of serine/threonine residues within the activation loop.  相似文献   

18.
Communication is an important cornerstone to the physician-patient relationship when considering advance directives. Discussing advance directives with patients is a process best initiated in routine, well-adult care that can be made more daunting when the patient is critically ill; yet, when patients are afflicted with cancer, communication on advance directives can be optimized when the primary care physician and oncologist together work with the patient. The need to counsel patients on advance directives regardless of the venue (whether inpatient or outpatient) highlights that an ongoing alliance between the oncologist and the primary care physician can help facilitate consent to, and allow periodic review of, advance directives by cancer patients. This process ensures that the patient's preferences are respected at life's end.  相似文献   

19.
Regulation of the renal Na/H exchanger NHE-3 by protein kinase A (PKA) is a key intermediate step in the hormonal regulation of acid-base and salt balance. We studied the role of NHE-3 phosphorylation in this process in NHE-deficient AP-1 cells transfected with NHE-3 and in OKP cells expressing native NHE-3. A dominant-negative PKA-regulatory subunit completely abolished the effect of cAMP on NHE-3 activity demonstrating a role of PKA in the functional regulation of NHE-3 by cAMP. NHE-3 isolated from cAMP-treated cells showed lower phosphorylation by purified PKA in vitro suggesting that NHE-3 is a PKA substrate in vivo. Although changes in NHE-3 whole protein phosphorylation is difficult to detect in response to cAMP addition, the tryptic phosphopeptide map of in vivo phosphorylated NHE-3 showed a complex pattern of constitutive and cAMP-induced phosphopeptides. To test the causal relationship between phosphorylation and activity, we mutated eight serines in the cytoplasmic domain to glycine or alanine. Single or multiple mutants harboring S552A or S605G showed no PKA activation or reduced regulation by PKA activation. Ser-552 and Ser-605 were phosphorylated in vivo. However, multiple mutations of serines other than Ser-552 or Ser-605 also reduced the functional PKA regulation. We conclude that regulation of NHE-3 by PKA in vivo involves complex mechanisms, which include phosphorylation of Ser-552 and Ser-605.  相似文献   

20.
There is increasing evidence to suggest that free radical generation is central to a variety of pathological processes, including drug toxicity. Studies demonstrating the ability of gentamicin to facilitate the generation of radical species suggest that this process plays an important role in aminoglycoside-induced ototoxicity. Because transition metals, particularly iron, play an important role in the production of free radicals and the generation of reactive oxygen species, we sought to determine whether gentamicin-induced ototoxicity is exacerbated by increases in serum iron levels. To this end, we assessed the effects of supplemental iron administration (2 mg/kg/day and 6 mg/kg/day) on changes in auditory function induced by co-administration of gentamicin (100 mg/kg/day for 30 days). Experiments were carried out on pigmented guinea pigs initially weighing 250-300 g. Changes in cochlear function were characterized as shifts in compound action potential (CAP) thresholds, estimated every third day throughout the treatment period by use of chronic indwelling electrodes implanted at the round window, vertex, and contralateral mastoid. Results showed that animals receiving iron in combination with gentamicin demonstrated a more rapid and profound elevation in CAP thresholds compared with animals receiving gentamicin alone. This effect occurred in a dose-dependent manner. Animals receiving supplemental iron alone maintained normal CAP thresholds throughout the treatment period. There was no statistically significant difference in serum gentamicin levels between groups receiving gentamicin alone or gentamicin plus iron. These results provide further evidence of the recently reported intrinsic role of iron in aminoglycoside ototoxicity, and highlight a potential risk of aminoglycoside administration in patients with elevated serum iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号