首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
测定了室温下涂碳前后化学气相沉积法(CVD)制备的国产SiC纤维的抗拉强度,发现威布尔分布可以较好地描述SiC纤维的抗拉强度的统计分布.分析得出以下结论,涂碳后与涂碳前的纤维抗拉强度的Weibull模数,及其平均抗拉强度相比,前者明显高于后者.涂碳后SiC纤维的表面缺陷大大减小.随着标距和应变速率的增加,纤维的平均强度逐渐下降,而Weibull模数基本不变.并对断口进行分析,结果表明SiC纤维呈明显的脆性断裂.  相似文献   

3.
不同标距下CVD钨芯SiC纤维强度的Weibull分布   总被引:1,自引:0,他引:1  
对用冷壁气相沉积制备的CVD钨芯SiC纤维的抗拉强度分布进行了研究.用环氧树脂将纤维粘结在纸夹中进行拉伸,标距分别为10mm,25mm和50mm.结果表明,CVD钨芯SiC纤维室温下的强度服从Weibull分布.10mm,25mm和50mm标距下的Weibull模数分别为6.03,5.23和4.36,Weibull模数随试样标距增大而减小.纤维强度平均值在标距长度为25mm时最大,50mm时次之,10mm时最小.  相似文献   

4.
对SiC纤维的直流电阻加热CVD工艺进行了研究,实验采用将两种硅烷的比例混合液体通过液体流量计计量供液并即时完全汽化后与氢气混合输入到反应管并在水冷水银封入气口通入顶吹氢的供气方案,从而简化了工艺并解决了反应气体冷凝问题.在CVD工艺研究中发现影响纤维沉积质量的因素主要有沉积温度、反应气体组分及流量、走丝速度等工艺参数,此外还发现直流电阻加热CVD工艺中,反应管前后存在约200℃的温差,采用双沉积室工艺可减缓温差.在一定的沉积参数下,可沉积出直径60~100μm、抗拉强度3100~4080MPa的SiC纤维.  相似文献   

5.
6.
刘翠霞  杨延清  徐婷 《功能材料》2011,42(Z1):89-91
采用正交设计方法对CVD法制备SiC纤维的工艺过程进行了分析和研究.在CVD法SiC纤维沉积过程中,主要考虑了5种工艺因素和4个水平,计算了不同工艺因素务件下的方差,分析了各自影响的显著性.找出影响SiC纤维抗拉强度工艺因素的主次顺序,并讨论了主要工艺因素对沉积过程的影响机理.  相似文献   

7.
郝小辉  乔生儒  陈博 《材料导报》2005,19(Z2):238-241
分析比较了两种不同类型化学气相沉积(CVD)法制备钨芯SiC纤维的反应器,提出了改进方法,设计了一种立式冷壁反应器,并对用CVD法制备钨芯SiC纤维的工艺进行了研究.运用扫描电镜观察了制备纤维形貌,并用Weibull统计方法分析了纤维强度与其形貌之间的关系.结果表明,在不同的氢气流量和氮气流量比下,沉积速率均随沉积温度的升高而增大.总反应在较低温度区受表面反应控制,在较高温度区受质量传输控制.纤维的断裂强度大致可分为高、中、低3个区,CVD-SiC纤维的强度与其微观形貌有密切关系,缺陷的多少决定纤维强度的高低.  相似文献   

8.
袁钦  宋永才 《无机材料学报》2016,31(11):1157-1165
连续SiC纤维最主要的制备方法是先驱体转化法, 目前已发展到第三代, 它主要作为SiC基复合材料(SiCf/SiC)的增强体。SiCf/SiC具有优异的耐高温、抗氧化和高温抗蠕变性, 及其在中子辐照条件下的低放射性, 成为高温、辐射等苛刻条件下结构部件的优先候选材料。本文首先对国内外SiC纤维的发展, 尤其是对第三代SiC纤维的不同制备思路和特征进行了介绍。然后, 对SiCf/SiC制备工艺和性能的进展进行了综述, 突出了制备工艺创新与SiC纤维发展的关系。最后, 对近几年SiCf/SiC在高性能航空发动机、聚变反应堆领域的应用进展进行了总结, 并对国内连续SiC纤维和SiCf/SiC复合材料的发展进行了展望。  相似文献   

9.
刘伟峰  王亦菲叶飞 《材料导报》2007,21(F05):237-238,255
采用先驱体转化法(PIP)以酚醛和沥青为先驱体在SiC纤维表面涂覆碳层,并制备SiCf/SiC复合材料;优化了两种碳涂层制备工艺;分析了涂层后纤维的表面形貌并测试涂层厚度;研究了两种碳涂层对两种SiC纤维(普通和含铝)及复合材料力学性能的影响。  相似文献   

10.
采用先驱体转化法(PIP)以酚醛和沥青为先驱体在SiC纤维表面涂覆碳层,并制备SiCf/SiC复合材料;优化了两种碳涂层制备工艺;分析了涂层后纤维的表面形貌并测试涂层厚度;研究了两种碳涂层对两种SiC纤维(普通和含铝)及复合材料力学性能的影响.  相似文献   

11.
本文利用声发射技术,成功地测出 SiC(CVD)单纤维增强 Al 基复合材料在拉伸过程中纤维的平均断裂长度,并由萃取纤维的方法加以验证。再用微观力学模型,计算出纤维与基体之间的界面剪切强度。  相似文献   

12.
高性能 CVD 法 SiC 纤维的研制   总被引:1,自引:1,他引:0  
石南林 《材料导报》2000,14(7):53-54
使用射频加热CVD新工艺制备出带有碳表面涂层的高性能SiC(W芯)纤维;同时使用电化学方法对SiC纤维进行表面处理,制备出带有SiO2表面涂层的高性能SiC(W芯)纤维。其力学性能均达到国际先进水平。以上SiC(W芯)纤维与金属基体,如铝、钛合金等,以及树脂基体界面相容性良好;SiC(W芯)纤维/树脂基复合材料并具有明显的吸收电磁波的性能。  相似文献   

13.
魏亚  姚湘杰 《工程力学》2015,32(3):104-109
该研究研发了混凝土早龄期拉伸徐变测量装置,并能够测量直接拉伸强度和拉伸弹性模量。对测得的拉伸徐变进行模拟,采用现存模型对数据进行验证,认为现存模型不能够精确预测混凝土早龄期拉伸徐变。根据实测拉伸徐变数据对现存模型进行修正,建立了更能代表实际工程情况、用于混凝土结构物应力计算的拉伸徐变模型,提供了可用于结构物应力计算的松弛模量。  相似文献   

14.
抗拉强度测量不确定度的评定   总被引:1,自引:0,他引:1  
根据GB/T228—2002《金属材料室温拉伸试验方法》标准的要求,对牌号为Q235钢板的抗拉强度进行了测试,并对Q235钢板抗拉强度的不确定度进行了评定。  相似文献   

15.
碳/铝复合材料界面结合强度对拉伸性能的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
本文主要研究C/Al复合材料先驱丝的界面结合强度的表征方法以及界面结合状态对复合材料拉伸性能的影响.用自行研制的小型剪切试验机测定复合材料先驱丝的纵向剪切强度,通过计算得到复合材料界面处的剪切强度以此作为界面结合强度的定量表征方法.实验证明,不同界面结合强度的复合丝在宏观上表现出有不同纵向剪切强度值,复合材料的界面结合强度可以用界面剪切强度值定量描述.复合材料拉伸强度随界面强度提高而减少,在满足复合材料横向强度要求前提下,降低复合材料界面结合有利于提高拉伸强度.  相似文献   

16.
利用三点弯曲测量CVD金刚石膜的断裂强度的方法 ,研究试样尺寸、抛光及加载方式对金刚石膜的断裂强度的影响。试样尺寸在一定范围内 ,试样大小、抛光与否对金刚石膜的断裂强度的影响不大 ;而 10mm× 2mm的试样对测量金刚石膜断裂强度具有意义。加载方式对金刚石膜的断裂强度影响较大 ,当金刚石膜形核面处于张应力时得到的断裂强度值要高于生长面处于张应力时得到的值 ,棱边加载方式得到断裂强度值处于两者之间 ,更具有代表性。  相似文献   

17.
CVD法SiC(C芯)纤维的发展概况   总被引:1,自引:1,他引:1  
概述了CVD法SiC(C 芯)纤维的制备、性能、显微结构和应用。  相似文献   

18.
对塑料弯曲强度进行评定,对引起不确定性的各个因素进行逐项评估,最后得到塑料弯曲强度的扩展不确定度为:可以期望在(14.27-0.38)~(14.27+0.38)MPa的区间包含了弯曲强度测量结果可能值的95%。  相似文献   

19.
混凝土作为非均质材料,其材料性能存在随试件几何尺寸变化的尺寸效应。该文在细观层次上将混凝土看作由粗骨料、砂浆和二者界面过渡区组成的三相复合材料,采用刚体弹簧元数值方法模拟了混凝土的劈裂抗拉强度和弯曲抗压强度的尺寸效应,并与已有的试验结果进行了对比验证。结果表明:劈裂加载的试件破坏形态和劈裂抗拉强度与试验结果均具有良好的一致性,并且小尺寸试件所表现出的尺寸效应要明显于大尺寸试件;对不同尺寸四点弯曲钢筋混凝土梁开展细观数值分析得到跨中截面混凝土的弯曲抗压强度,随着梁有效高度的增加,名义弯曲抗压强度整体上呈现降低的趋势,但当梁有效高度大于240mm时趋于稳定。  相似文献   

20.
采用两种形状(纺锤形、矩形)的拉伸试样对热压单向M40JB-Cf/SiC和T800-Cf/SiC复合材料进行了高温拉伸强度测试,得到了Cf/SiC复合材料的拉伸强度,并对纺锤形试样断裂应变的表达式进行修正,得出了复合材料的弹性模量。M40JB-Cf/SiC复合材料1300℃的拉伸强度及模量分别为374 MPa和134 GPa, 1450 ℃的拉伸强度及模量为338 MPa和116 GPa,T800-Cf/SiC复合材料1300 ℃拉伸强度和模量为392 MPa 和115 GPa。测试结果与试样的断裂方式密切相关,在有效部位断裂的测试结果大于在非有效区断裂的测试结果。M40JB-Cf/SiC复合材料的拉伸断裂应力-应变曲线表现出塑性变形的非线弹性破坏特征,而T800-Cf/SiC主要表现为线弹性特征。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号