首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
By using the effective shear modulus and mass density, the influence of functional gradient on dynamic energy release rate is discussed under the condition of constant velocity of crack propagation.  相似文献   

2.
This work investigates elastic-plastic crack growth in ceramic/metal functionally graded materials (FGMs). The study employs a phenomenological, cohesive zone model proposed by the authors and simulates crack growth by the gradual degradation of cohesive surfaces ahead of the crack front. The cohesive zone model uses six material-dependent parameters (the cohesive energy densities and the peak cohesive tractions of the ceramic and metal phases, respectively, and two cohesive gradation parameters) to describe the constitutive response of the material in the cohesive zone. A volume fraction based, elastic-plastic model (extension of the original Tamura-Tomota-Ozawa model) describes the elastic-plastic response of the bulk background material. The numerical analyses are performed using WARP3D, a fracture mechanics research finite element code, which incorporates solid elements with graded elastic and plastic properties and interface-cohesive elements coupled with the functionally graded cohesive zone model. Numerical values of volume fractions for the constituents specified at nodes of the finite element model set the spatial gradation of material properties with isoparametric interpolations inside interface elements and background solid elements to define pointwise material property values. The paper describes applications of the cohesive zone model and the computational scheme to analyze crack growth in a single-edge notch bend, SE(B), specimen made of a TiB/Ti FGM. Cohesive parameters are calibrated using the experimentally measured load versus average crack extension (across the thickness) responses of both Ti metal and TiB/Ti FGM SE(B) specimens. The numerical results show that with the calibrated cohesive gradation parameters for the TiB/Ti system, the load to cause crack extension in the FGM is much smaller than that for the metal. However, the crack initiation load for the TiB/Ti FGM with reduced cohesive gradation parameters (which may be achieved under different manufacturing conditions) could compare to that for the metal. Crack growth responses vary strongly with values of the exponent describing the volume fraction profile for the metal. The investigation also shows significant crack tunneling in the Ti metal SE(B) specimen. For the TiB/Ti FGM system, however, crack tunneling is pronounced only for a metal-rich specimen with relatively smaller cohesive gradation parameter for the metal.  相似文献   

3.
Cracks in stepped and continuously graded material specimens under flexural loading were investigated via finite element analysis. Calculation of mechanical energy release rates and propagation angles with crack-opening displacement correlation and the local symmetry (KII = 0) criterion, respectively, provided results most efficiently and accurately, as compared with compliance and J-integral approaches and other deflection criteria. A routine was developed for automatic crack extension and remeshing, enabling simulation of incremental crack propagation. Effects of gradient profile and crack geometry on crack-tip stresses and crack propagation path are examined, and implications of these for optimal design of graded components against failure by fast fracture are discussed.  相似文献   

4.
The driving forces for a generally oriented crack problem embedded in a Functionally Graded strip sandwiched between two half plane are analyzed using singular integral equations with Cauchy kernels, and integrated using Lobatto-Chebyshev collocation. Mixed-mode Stress Intensity Factors (SIF) and Strain Energy Release Rates (SERR) are calculated. The Stress Intensity Factors are compared for accuracy with previously published results. Parametric studies are conducted for various non-homogeneity ratios, crack lengths, crack orientation and thickness of the strip. It is shown that the SERR is more complete and should be used for crack propagation analysis.  相似文献   

5.
为了模拟功能梯度材料(FGM)在工程应用中可能会出现的断裂问题并计算相应的开裂载荷,通过编写用户自定义UEL子程序将梯度扩展单元嵌入到ABAQUS软件中模拟功能梯度材料的物理场,并编写交互能量积分后处理子程序计算裂纹尖端的混合模式应力强度因子(SIF),采用最大周向应力准则编写子程序计算裂纹的偏转角,并模拟了裂纹扩展路径,计算了裂纹的起裂载荷。讨论了材料梯度参数对裂纹扩展路径以及起裂载荷的影响规律。通过与均匀材料的对比,验证了功能梯度材料断裂性能的优越性。研究表明:外载平行于梯度方向时,垂直梯度方向的初始裂纹朝着等效弹性模量小的方向扩展,且偏转角在梯度指数线性时出现峰值,并随着组分弹性模量比的增加而变大;当外载和初始裂纹均平行于梯度方向时,材料等效弹性模量和断裂韧性的增加或者梯度指数的减小都导致起裂载荷变大。  相似文献   

6.
7.
本文采用双悬臂梁(DCB)试件研究了复合材料层合板层间插入韧性胶膜(Interleaf)层的Ⅰ型断裂行为。试验结果表明,含和不含Interleaf层试件分别呈现脆性非稳态和脆性稳态分层扩展特性。针对非稳定裂纹扩展问题,依据动态断裂力学中应变能释放率与动能变化率的关系,提出了以断裂韧性值GIC变化来抵消动能变化对裂纹扩展过程影响的准静态分析方法,根据试验中裂纹扩展的韧性变化,推导出适用于准静态裂纹扩展模拟的等效韧性GIC*,利用ABAQUS平台和虚裂纹闭合技术(VCCT)建立了三维有限元计算模型;实现了从起裂到止裂的整个裂纹动态扩展过程的数值模拟,揭示了非稳定裂纹扩展过程中一些复杂的力学现象。   相似文献   

8.
In this paper, the mode I crack problem of functionally gradient materials (FGMs) with the gradient direction parallel to the crack is discussed, and the differences of stress distribution between the gradient materials and the homogeneous materials are analyzed. It is shown that a mode I crack problem of FGMs with the gradient direction parallel to the crack direction can become a mixed‐mode crack problem. In FGMs, the crack initiation angles are determined by the fracture toughness gradient, elastic modulus and crack mode. If the gradient coefficients are small, the crack initiation angles in FGMs are the same as those in homogeneous materials. If the elastic modulus gradient is large, the principal stress terms without the gradient coefficients can be ignored in obtaining the crack initiation angle. In this study, all the above results are generalized to the mixed‐mode crack problems with arbitrary angle between the gradient direction and the crack direction.  相似文献   

9.
This article provides a comprehensive theoretical investigation on a finite crack with constant length (Yoffe type crack) propagating in an interfacial layer with spatially varying elastic properties under inplane loading. The analytical formulations are developed using Fourier transforms and solving the resulting singular integral equations in terms of the opening and sliding displacements of the crack. The dynamic stress intensity factors and energy release rate are analyzed to study the dynamic fracture property of this inherent mixed mode crack problem. Numerical examples are provided to show the effects of the material properties, the thickness of the interfacial layer, the crack position and speed upon the dynamic fracture behaviour, and the singularity transition between the current crack and the corresponding interfacial crack for thin interphase.  相似文献   

10.
The interface crack problem for a composite layer that consists of a homogeneous substrate, coating and a nonhomogeneous functionally graded interphase was formulated for singular integral equations with Cauchy kernels, which were integrated using the Lobatto–Chebyshev collocation technique. Mixed-Mode Stress Intensity Factors (SIFs) and Strain Energy Release Rates were calculated. The SIFs were compared for accuracy with relevant results previously published. The parametric studies were conducted for the various thickness of each layer and for various nonhomogeneity ratios. Particular application to the Zirconia thermal barrier on steel substrate is demonstrated.  相似文献   

11.
A graded finite element method code based on Rayleigh–Ritz energy formulation is developed and implemented to study the elastic behavior of a layered plate loaded by a solid isotropic cylinder and a functionally graded interlayer. The applied nonaxisymmetric loading to the inner cylinder induces a stress concentration in the flexible part of the joint. The effects of different thicknesses and power law exponents of functionally graded interlayer on the distribution of displacements and stresses are investigated, which verifies the ability of functionally graded material to control the stress and displacement waves. The time-dependent response of the structure is also obtained based on Newmark's time integration method.  相似文献   

12.
运用基于能量的裂纹偏移准则, 分别建立了两相和三相复合材料基体裂纹偏移/ 穿透的轴对称有限元模型, 考察了纤维体积分数、描述材料特性弹性失配的Dundurs 参数α和相对裂纹扩展长度ad / ap 对相对能量释放率Gd / Gp 的影响。将两相复合材料的有限元结果与He 等人的结果进行对比, 进一步考察了三相复合材料界面层厚度和Dundurs 参数α1 和α2 对Gd / Gp 的影响。分别将碳涂层SiC 纤维增强复合材料SiC/ C/ Ti-6A1-4V 和碳涂层陶瓷基增强复合材料SiC/ C/ SiC 运用于有限元分析中, 结果表明, 所建立的模型能够准确地预测和比较基体裂纹偏移的机理。   相似文献   

13.
One of the main interests of fracture mechanics in functionally graded materials is the influence of such an inhomogeneity on crack propagation processes. Using the Griffith’ energy principle, the change of energy has to be calculated, if the crack starts to propagate. In homogeneous linear-elastic structures (asymptotically precise) formulas for the energy release rate are known, but a direct transfer of these methods to functionally graded materials can lead to very inaccurate results. Moreover, the influence of the inhomogeneity on the crack path cannot be seen. Here, a simple model for functionally graded materials is introduced. For this model, a formula for the change of potential energy is derived, giving detailed information on the effect of the gradation on crack propagation.  相似文献   

14.
This paper is directed towards finite element computation of fracture parameters in functionally graded material (FGM) assemblages of arbitrary geometry with stationary cracks. Graded finite elements are developed where the elastic moduli are smooth functions of spatial co‐ordinates which are integrated into the element stiffness matrix. In particular, stress intensity factors for mode I and mixed‐mode two‐dimensional problems are evaluated and compared through three different approaches tailored for FGMs: path‐independent J*k‐integral, modified crack‐closure integral method, and displacement correlation technique. The accuracy of these methods is discussed based on comparison with available theoretical, experimental or numerical solutions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Mixed-mode dynamic crack growth behavior in functionally graded materials (FGMs) under thermo-mechanical loading is studied. Asymptotic analysis in conjunction with displacement potentials has been used to develop thermo-mechanical stress fields for a mixed mode propagating crack in a FGM. The shear modulus, mass density, thermal conductivity and coefficient of thermal expansion of the FGM are assumed to vary exponentially along the gradation direction. First, asymptotic temperature fields are derived for an exponential variation of thermal conductivity and later these temperature fields are used in deriving stress fields. Using asymptotic thermo-mechanical stress fields the variation of maximum shear stress, circumferential stress and strain-energy density as a function of temperature around the crack tip are generated. Finally, utilizing the minimum strain-energy density criterion and the maximum circumferential stress criterion, the crack growth direction for various crack-tip speeds, non-homogeneity coefficients and temperature fields are determined.  相似文献   

16.
针对组分材料体积分数任意分布的聚合物功能梯度材料,研究其在蠕变加载条件下Ⅰ型裂纹应力强度因子(SIFs)和应变能释放率的时间相依特征。由Mori-Tanaka方法预测等效松弛模量,在Laplace变换域中采用梯度有限元法和虚拟裂纹闭合方法计算断裂参数,由数值逆变换得到物理空间的对应量。分析边裂纹平行于梯度方向的聚合物功能梯度板条,分别考虑均匀拉伸和三点弯曲蠕变加载。结果表明,聚合物梯度材料应变能释放率随时间增加,其增大的程度与黏弹性组分材料体积分数正相关;材料的非均匀黏弹性性质产生应力重新分布,导致裂纹尖端应力场强度随时间变化,当裂纹位于黏弹性材料含量较低的一边时,应力强度因子随时间增加,反之,随时间减小。而且,材料的应力强度因子与时间相依的变化范围和体积分数分布以及加载方式有关,当体积分数接近线性分布时,变化最明显,三点弯曲比均匀拉伸的变化大。SIFs随时间的延长增加或减小、加剧或减轻裂纹尖端部位的“衰坏”,表明黏弹性功能梯度裂纹体的延迟失稳需要联合采用应力强度因子与应变能释放率作为双控制参数。  相似文献   

17.
采用粉末冶金方法制备出NiCr/ZrO2功能梯度材料FGMs。通过2种断裂试件研究了材料梯度对混合型断裂行为的影响(FGM-A试件,裂纹位于试件的弹性模量较大一侧;FGM-B试件,裂纹位于试件的弹性模量较小一侧)。对2种断裂试件在非对称载荷下进行准静态断裂实验,并利用数字散斑相关方法测得Ⅰ、Ⅱ型应力强度因子。结果表明:FGM-A的裂纹的开裂角小于FGM-B的开裂角;FGM-A的弹性梯度对静态裂纹有保护作用;弹性模量的梯度变化和裂尖局部材料的断裂韧性会影响混合型裂纹的启裂。  相似文献   

18.
微观组织对贝氏体钢疲劳裂纹扩展行为的影响   总被引:1,自引:0,他引:1  
为了研究组织对疲劳裂纹扩展行为的影响,对3种不同贝氏体组织钢进行了疲劳裂纹扩展实验,并采用SEM和EBSD等方法对裂纹进行了分析.结果表明,板条贝氏体组织在近门槛区和稳定扩展区阻碍裂纹扩展的能力最强,具有最小的裂纹扩展速率.板条贝氏体组织中的大角度晶界使裂纹更容易发生偏折,导致断口表面粗糙度增加,裂纹扩展受到较强的粗糙度诱导裂纹闭合效应的作用.随着ΔK的增大,塑性诱导裂纹闭合效应取代粗糙度诱导裂纹闭合效应开始占据主导作用,是板条贝氏体组织中裂纹扩展速率对ΔK的变化较敏感的原因.  相似文献   

19.
Stable matrix crack growth behaviour under mechanical fatigue loading has been studied in a quasi-isotropic (0/90/-45/+45)s GFRP laminate. Detailed experimental observations were made on the accumulation of cracks and on the growth of individual cracks in +45° as well as 90° plies. A generalised plain strain finite element model of the damaged laminate has been constructed. This model has been used to relate the energy release rate of growing cracks to the crack growth rate via a Paris relation.  相似文献   

20.
This paper is concerned with the thermal fracture problem of a functionally graded orthotropic strip, where the crack is situated parallel to the free edges. All the material properties are assumed to be dependent only on the coordinate y (perpendicular to the crack surfaces). By using Fourier transform, the thermoelastic problem is reduced to those that involve a system of singular integral equations. Numerical results are presented to show the effects of the crack position and the material distribution on the thermal stress intensity factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号